Simplify and express each of the following in exponential form:
(i) (23 × 33 × 4) / (3 × 32) (ii) ((52 )3 × 54) ÷ 57 (iii) 254 ÷ 53
(iv) (3 × 72 ×118) / (21×113) (v) 37 / (34 × 33) (vi) 20 + 30 + 40
(vii) 20 × 30 × 40 (viii) (30 + 20 )× 50 (ix) (28 × a5) / (43 × a3)
(x) (a5 / a3) × a8 (xi) (45 × a8b3) / (45 × a5b2) (xii) (23 × 2)2
Solution:
To solve this question, we be using the laws of exponents.
(i) (23 × 34 × 4) / (3 × 32)
= (23 × 34 × 22) / (3 × 25)
= (23 + 2 × 34) / (31 × 25) [am × an = am + n]
= (25 × 34 - 1) / (25) [am ÷ an = am - n]
= 33
(ii) ((52 )3 × 54) ÷ 57
= [56 × 54] ÷ 57 [(am)n = amn]
= 56 + 4 ÷ 57 [am × an = am + n]
= 510 ÷ 57
= 510 - 7 [am ÷ an = am - n]
= 53
(iii) 254 ÷ 53
= (52)4 ÷ 53
= 58 ÷ 53 [(am)n = amn]
= 58 - 3 [am ÷ an = am - n]
= 55
(iv) (3 × 72 × 118) / (21 × 113)
= (3 × 72 × 118) / (3 × 7 × 113) [Since, 21 = 3 × 7]
= (72 × 118) / (7 × 113)
= 72 - 1 × 118 - 3 [am ÷ an = am - n]
= 7 × 115
(v) 37 / (34 × 33)
= 37 / 34 + 3 [am × an = am + n]
= 37 / 37
= 37 - 7 [am ÷ an = am-n]
= 30
= 1 [ao = 1]
(vi) 20 + 30 + 40
= 1 + 1 + 1 [ao = 1]
= 3
(vii) 20 × 30 × 40
= 1 × 1 × 1 [ao = 1]
= 1
(viii) (30 + 20 ) × 50
= (1 + 1) × 1 [ao = 1]
= 2 × 1
= 2
(ix) (28 × a5) / (43 × a3)
= (28 × a5) / ((22)3 × a3)
= (28 × a5) / (26 × a3) [(am)n = amn]
= 28 - 6 × a5 - 3 [am ÷ an = am - n]
= 22 × a2
(x) (a5 / a3) × a8
= a5 - 3 × a8 [am ÷ an = am - n]
= a2 × a8
= a2 + 8 [am × an = am + n]
= a10
(xi) (45 × a8b3) / (45 × a5b2)
= 45 - 5 × a8 - 5 × b3 - 2 [am ÷ an = am - n]
= 40 × a3 × b
= a3 × b [ao = 1]
(xii) (23 × 2)2
= (23 + 1)2 [am × an = am + n]
= (24)2
= 24 × 2 [(am)n = amn]
= 28
☛ Check: NCERT Solutions for Class 7 Maths Chapter 13
Video Solution:
Simplify and express each of the following in exponential form: (i) (2³ × 3³ × 4) / (3×32) (ii) [(5² )³ × 5⁴] ÷ 5⁷ (iii) 25⁴ ÷ 5³ (iv) (3 × 7² ×11⁸) / (21×11³) (v) 3⁷ / (3⁴ × 3³) (vi) 2⁰ + 3⁰ + 4⁰(vii) 2⁰ × 3⁰ × 4⁰ (viii) (3⁰ + 2⁰ )× 5⁰ (ix) (2⁸ × a⁵) / (4³ × a³) (x) (a⁵ / a³) × a⁸ (xi) (4⁵ × a⁸b³) / (4⁵ × a⁵b²) (xii) (2³ × 2)²
Maths NCERT Solutions Class 7 Chapter 13 Exercise 13.2 Question 2
Summary:
We have simplified and expressed each of the following in exponential form: (i) (2³ × 3³ × 4) / (3×32) (ii) [(5² )³ × 5⁴] ÷ 5⁷ (iii) 25⁴ ÷ 5³ (iv) (3 × 7² ×11⁸) / (21×11³) (v) 3⁷ / (3⁴ × 3³) (vi) 2⁰ + 3⁰ + 4⁰(vii) 2⁰ × 3⁰ × 4⁰ (viii) (3⁰ + 2⁰ )× 5⁰ (ix) (2⁸ × a⁵) / (4³ × a³) (x) (a⁵ / a³) × a⁸ (xi) (4⁵ × a⁸b³) / (4⁵ × a⁵b²) (xii) (2³ × 2)² as follows: (i) 33 , (ii) 53 , (iii) 55 , (iv) 7 × 115 , (v) 1 , (vi) 3 , (vii) 1 , (viii) 2, (ix) 22 × a2, (x) a10 , (xi) a3 × b, (xii) 28.
☛ Related Questions:
- Say True Or False And Justify Your Answer I 10 X 1011 10011 Ii 23 52 Iii 23 X 32 65 Iv 30 10000
- Express Each Of The Following As A Product Of Prime Factors Only In Exponential Form I 108 X 192 Ii 270 Iii 729 X 64 Iv 768
- Simplify I 252 X 73 83 X 7 Ii 25 X 52 X T8 103 X T4 Iii 35 X105 X 25 57 X 65
- Write The Following Numbers In The Expanded Forms 279404 3006194 2806196 120719 20068
visual curriculum