Show that the square of any positive integer cannot be of the form 6m + 2 or 6m + 5 for any integer m
Solution:
Consider a positive integer = a
Using the Euclid’s division algorithm,
a = 6q + r, where 0 ≤ r < 6
a2 = (6q + r)2 = 36q2 + r2 + 12qr [∵(a + b)2 = a2 + 2ab + b2]
a2 = 6(6q2 + 2qr) + r2 --- (i), where,0 ≤ r < 6.
When r = 0,
a2 = 6 (6q2) = 6m,
where m = 6q2 is an integer.
When r = 1,
a2 = 6 (6q2 + 2q) + 1 = 6m + 1,
where m = (6q2 + 2q) is an integer.
When r = 2,
a2 = 6(6q2 + 4q) + 4 = 6m + 4,
where m = (6q2 + 4q) is an integer.
When r = 3,
a2 = 6(6q2 + 6q) + 9 = 6(6q2 + 6q) + 6 + 3
a2 = 6(6q2 + 6q + 1) + 3 = 6m + 3,
where m = (6q + 6q + 1) is integer.
When r = 4,
a2 = 6(6q2 + 8q) + 16
= 6(6q2 + 8q) + 12 + 4
a2 = 6(6q2 + 8q + 2) + 4 = 6m + 4,
where m = (6q2 + 8q + 2) is integer.
When r = 5,
a2 = 6 (6q2 + 10q) + 25
= 6(6q2 + 10q) + 24 + 1
a2 = 6(6q2 + 10q + 4) + 1 = 6m + 1,
where m = (6q2 + 10q + 4) is integer
Therefore, the square of any positive integer cannot be of the form 6m + 2 or 6m + 5 for any integer m
✦ Try This: Show that the square of any positive integer cannot be of the form 4m + 2 or 4m + 5 for any integer m
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 1
NCERT Exemplar Class 10 Maths Exercise 1.3 Problem 4
Show that the square of any positive integer cannot be of the form 6m + 2 or 6m + 5 for any integer m
Summary:
The square of any positive integer cannot be of the form 6m + 2 or 6m + 5 for any integer m. Hence proved
☛ Related Questions:
visual curriculum