Show that:
(i) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52° - sin 38° sin 52° = 0
Solution:
We will be using the trigonometric ratios of complementary angles to solve the given question.
(i) Taking L.H.S, tan 48° tan 23° tan 42° tan 67°
Since tan (90° - θ) = cot θ
tan 48° tan 23° tan 42° tan 67° = tan (90° - 42°) tan(90° - 67°) tan 42° tan 67°
= cot 42° cot 67° tan 42° tan 67°
= (cot 42° tan 42°)(cot 67° tan 67°)
= (1/tan 42° × tan 42°)(1/tan 67° × tan 67°)
= 1 × 1
= 1
= R.H.S
Hence, tan 48°tan 23°tan 42° tan 67° = 1
(ii) Taking L.H.S, cos 38° cos 52° - sin 38° sin 52°
sin(90° - θ) = cos θ
cos 38° cos 52° - sin 38° sin 52° = cos 38° cos 52° - sin (90° - 52°) sin (90° - 38°)
= cos 38° cos 52° - cos 52° cos 38°
= 0
= R.H.S
Hence, cos 38° cos 52° - sin 38° sin 52° = 0
☛ Check: NCERT Solutions for Class 10 Maths Chapter 8
Video Solution:
Show that: (i) tan 48° tan 23° tan 42° tan 67° = 1 (ii) cos 38° cos 52° - sin 38° sin 52° = 0
Maths NCERT Solutions Class 10 Chapter 8 Exercise 8.3 Question 2
Summary:
It is proved that, (i) tan 48° tan 23° tan 42° tan 67° = 1, (ii) cos 38° cos 52° − sin 38° sin 52° = 0
☛ Related Questions:
visual curriculum