Prove the following: (sin x - sin 3x) / (sin2x - cos2x) = 2sin x
Solution:
LHS = (sin x - sin 3x) / (sin2x - cos2x)
= [2cos (x + 3x)/2 sin (x - 3x)/2] / -[cos2x - sin2x]
[Since sin A - sin B = 2 cos [(A + B) / 2] sin [(A - B) / 2]]
= 2cos 2x sin (-x) / -cos 2x
[By double angle formulas, cos 2x = cos2x - sin2x ]
= 2cos 2x (-sin x) / (- cos 2x)
[As sin (-A) = - sin A]
= 2sin x
= RHS
NCERT Solutions Class 11 Maths Chapter 3 Exercise 3.3 Question 20
Prove the following: (sin x - sin 3x) / (sin²x - cos²x) = 2sin x
Summary:
We got, (sin x - sin 3x) / (sin2x - cos2x) = 2sin x. Hence Proved
Math worksheets and
visual curriculum
visual curriculum