Prove the following: sin 2x + 2sin 4x + sin 6x = 4cos2x sin 4x
Solution:
LHS = sin 2x + 2sin 4x + sin 6x
= [sin 2x + sin 6x] + 2sin 4x
= [2sin (2x + 4x)/2 cos (2x - 6x)/2] + 2sin 4x
[Since sin A + sin B = 2sin [(A + B) / 2] cos [(A - B) / 2]
= [2sin 4x cos (-2x)] + 2sin 4x
= 2sin 4x cos 2x + 2 sin 4x
[because cos (-A) = cos A]
= 2sin 4x (cos 2x + 2)
= 2sin 4x (2cos2x - 1 + 1)
[Using double angle formulas, cos 2x = 2cos2x - 1]
= 2sin 4x (2cos2x)
= 4cos2x sin 4x
= RHS
NCERT Solutions Class 11 Maths Chapter 3 Exercise 3.3 Question 14
Prove the following: sin 2x + 2sin 4x + sin 6x = 4cos2x sin 4x
Summary:
We got, sin 2x + 2sin 4x + sin 6x = 4cos2x sin 4x, Hence Proved
Math worksheets and
visual curriculum
visual curriculum