Prove the following: sin26x - sin24x = sin 2x sin 10x
Solution:
LHS = sin26x - sin24x
= (sin 6x + sin 4x) (sin 6x - sin 4x)
[Using a² - b² formula]
= [2sin {(6x + 4x) / 2} cos {(6x - 4x) / 2}] × [ 2 sin {(6x - 4x) / 2} cos {(6x +4x) / 2}]
[Since sin A ± sin B = 2sin [(A ± B) / 2] cos [(A ∓ B) / 2] ]
= [2sin 5x cos x] × [2 sin x cos 5x]
= [2sin 5x cos 5x] × [2 sin x cos x]
= [sin (5x + 5x) + sin (5x - 5x)] × [sin (x + x) + sin (x - x)]
[Since 2sin A cos B = sin (A + B) + sin (A - B)]
= [sin 10x + sin 0] × [sin 2x + sin 0]
= sin 10x × sin 2x
[by trigonometric table sin 0 = 0]
= sin 2x sin 10x
= RHS
NCERT Solutions Class 11 Maths Chapter 3 Exercise 3.3 Question 12
Prove the following: sin26x - sin24x = sin 2x sin 10x
Summary:
We got, sin26x - sin24x = sin 2x sin 10x. Hence Proved
Math worksheets and
visual curriculum
visual curriculum