Prove the following identities, where the angles involved are acute angles for which the expressions are defined
(i) (cosecθ - cotθ)² = (1 - cosθ)/(1 + cosθ)
(ii) cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A
(iii) tanθ/(1 - cotθ) + cotθ/(1 - tanθ) = 1 + secθ cosecθ [Hint : Write the expression in terms of sin θ and cos θ]
(iv) (1 + sec A)/sec A = sin² A/(1 - cos A) [Hint :Simplify LHS and RHS separately]
(v) (cos A - sin A + 1)/(cos A + sin A + 1) = cosec A + cot A, using the identity cosec2 A = 1 + cot2 A.
(vi) √1 + sin A/1 - sin A = sec A+ tan A
(vii) (sinθ - 2sin³θ)/(2cos³θ - cosθ) = tanθ
(viii) (sin A + cosec A)² + (cos A + sec A)² = 7 + tan² A + cot² A
(ix) (cosec A - sin A)(sec A - cos A) = 1/(tan A + cot A) [Hint : Simplify LHS and RHS separately]
(x) (1 + tan² A)/(1 + cot² A) = (1 - tan A / 1 - cot A)² = tan² A
Solution:
We use the standard identities of trigonometric and basic properties of trigonometric ratios to solve the given problems.
sin² A + cos² A = 1
cosec² A = 1 + cot² A
sec² A = 1 + tan² A
(i) (cosecθ - cotθ)² = (1 - cosθ) / (1 + cosθ)
L.H.S = (cosecθ - cotθ)² .....(1)
We know that the trigonometric functions,
cot (x) = cos (x)/sin (x) = 1/tan (x)
cosec (x) = 1/sin (x)
By substituting the above function in Equation (1)
(cosecθ - cot θ)² = (1/sinθ - cosθ/sinθ)²
= (1 - cosθ)²/(sinθ)²
= (1 - cosθ)²/sin² θ
= (1 - cosθ)²/(1 - cos²θ) (By Identity sin A + cos A = 1 Hence, 1 - cos A= sin A)
= (1 - cosθ)² (1 - cosθ)(1 + cosθ) [Using a² - b² = (a + b)(a - b)]
= (1 - cosθ)/(1 + cosθ)
= RHS
(ii) cos A / (1 + sin A) + (1 + sin A) / cos A = 2 sec A
L.H.S = cosA / (1 + sinA) + (1 + sinA) / cosA
= [cos² A + (1 + sin A)²] / [(1 + sin A)(cos A)]
= (cos² A + 1 + sin² A + 2sin A) / (1 + sin A)(cos A)
= [sin² A + cos² A + 1 + 2sin A] / [(1 + sin A)(cos A)]
= (1 + 1 + 2sin A) / [(1 + sin A)(cos A)] (By identity sin² A+ cos² A = 1)
= (2 + 2sin A) / [(1 + sin A)(cos A)]
= (2 + 2sin A) / [(1 + sin A)(cos A)]
= 2(1 + sin A) / [(1 + sin A)(cos A)]
= 2/cos A
= 2sec A
= R.H.S
(iii) tanθ/(1 - cotθ) + cotθ/(1 - tanθ) = 1 + secθ cosecθ
LHS = tanθ/(1 - cotθ) + cotθ/(1 - tanθ)
We know that the trigonometric functions,
tan (x) = sin (x)/cos (x)
cot (x) = cos (x)/sin (x) = 1/tan (x)
By substituting the above relations in Equation (1),
= [(sinθ/cosθ)/(1 - cosθ/sinθ)] + [(cosθ/sin θ)/1 - cosθ/sinθ]
= [(sinθ/cosθ)(sinθ - cosθ)/sinθ] + [(cosθ/sin θ)/(cosθ - sin θ)/cosθ
= sin² θ/cosθ(sinθ - cosθ) + cos² θ/sin θ(sinθ - cosθ)
Taking 1/(sinθ - cosθ) as common
= 1/(sinθ - cosθ) [sin²θ/cosθ - cos²θ/sinθ]
= 1/(sinθ - cosθ)[(sin³θ - cos³θ)/sinθ cosθ]
Using a³ - b³ = (a - b)(a² + ab + b²)
= 1/(sinθ - cosθ) [((sinθ - cosθ) sin²θ+ cos²θ + sin θcosθ)/sinθ cosθ]
= (1 + sinθ cosθ)/(sinθ cosθ) (By Identity sin² A+ cos² A = 1)
= 1/sinθ cosθ + (sinθ cosθ/sinθ cosθ)
= 1 + secθ cosecθ
= R.H.S.
(iv) (1 + sec A)/sec A = sin² A/(1 - cos A)
L.H.S = (1 + sec A)/sec A ......(1)
We know that the trigonometric functions,
sec (x) = 1/cos (x)
By substituting the above function in Equation (1),
(1 + sec A)/sec A = (1 + 1/cos A)/(1/cos A)
= (cos A + 1)/cosA/(1/cos A)
= (cosA + 1)/cos A × cos A/1
= (1 + cos A)
By multiplying (1- cos A), in both denominator and numerator
⇒ [(1 - cos A)(1 + cos A)] / (1 - cos A)
= (1 - cos² A)/1 - cos A [By Identity sin A + cos A = 1]
= sin² A/1 - cos A
= R. H.S
(v) (cos A - sin A + 1)/cos A + sin A + 1 = cosec A + cot A
L.H.S = cos A - sin A + 1/(cos A + sin A - 1)
Diving both numerator and denominator by sin A
= [cos A/sin A - sin A/sin A + 1/sin A]/[cos A/sin A + sin A/sin A - 1/sin A]
We know that the trigonometric functions,
cot (x) = cos(x)/sin (x) = 1/tan (x)
cosec(x) = 1/sin (x)
We get,
⇒ (cot A - 1 + cosec A) / (cot A + 1 - cosec A)
⇒ cot A - (1 - cosec A) / cot A+ (1 - cosec A)
We know that, 1 + cot² A = Cosec² A
Hence multiplying [cot A - (1 - cosec A)] in numerator and denominator
= [(cot A) - (1 - cosec A) × (cot A) - (1 - cosec A)]/[(cot A) + (1 - cosec A)-× (cot A) - (1 - cosec A)]
= [cot A - (1 - cosec A)]²/[(cot A)² - (1 - cosecA)²]
= [cot² A + (1 -cosecA)² - 2cot A(1 - cosecA)]/[cot² A - (1 + cosec² A - 2cosec A)]
= (cot² A + 1 + cosec² A - 2cosec A - 2cot A + 2cot AcosecA)/(cot²A - (1 + cosec² A - 2cosec A))
= (2cosec² A+ 2cot A cosec A - 2cot A - 2cosecA)/(cot² A - 1 - cosec² A + 2cosecA)
= 2cosec A(cosec A+ cot A) - 2(cot A + cosec A)/(cot² A - cosec² A - 1 + 2cosec A)
= (cosec A + cot A)(2cosec A - 2)/(- 1 - 1 + 2cosec A)
= (cosec A + cot A)(2cosec A - 2)/(2cosec A - 2)
= cosec A + cot A
= R.H.S
(vi) √1 + sin A/1 - sin A = sec A+ tan A
LHS = 1 + sin A/(1 - sin A) .....(1)
Multiplying and dividing by (1 + sin A)
⇒ (1 + sin A)(1 + sin A/1 - sin A)(1 + sin A)
= (1 + sin A)²/(1 - sin² A) [a² - b² = (a - b)(a + b)]
= (1 + sinA)/1 - sin² A
= 1 + sin A/cos² A
= 1 + sin A/cos A
= 1/cos A + sin A/cos A
= sec A + tan A
= R.H.S
(vii) (sinθ - 2sin³ θ)/(2cos³ θ - cosθ) = tanθ
L.H.S = (sinθ - 2sin³θ)/(2cosθ - cosθ)
Taking Sin θ and Cos θ common in both numerator and denominator respectively.
sinθ (1 - 2 sin²θ)/cosθ (2cos²θ - 1)
By Identity sin² A + cos² A = 1 hence, cos² A = 1 - sin² A and substituting this in the above equation,
⇒ sinθ (1 - 2sin²θ)/cosθ {2(1 - sin²θ) - 1}
= sinθ (1 - 2sin²θ)/cosθ(2 - 2sin²θ - 1)
= sinθ (1 - 2sin²θ)/cosθ(1 - 2sin²θ)
= sinθ/cosθ
= tanθ
= R.H.S
(viii) (sin A + cosec A)² + (cos A + sec A)² = 7 + tan² A + cot² A
L.H.S =-(sin A + cosec A)² + (cos A + sec A)²
By using (a + b)² = a² + 2ab + b²
⇒ sin² A + cosec² A + 2sin A cosec A + cos² A + sec² A + 2cos A sec A
By rearranging and using sec A = 1/cos A and cosec A = 1/sin A
⇒ (sin² A + cos² A) + (cosec² A + sec² A)+ 2 sin A (1/sin A) +-2cos A (1/cos A)
Hence (sin² A + cos² A) = 1, cosec² A = (1 + cot² A) and (sec² A- tan² A) = 1
⇒ 1 + 1 + cot² A + 1 + tan² A + 2 + 2
= 7 + tan² A + cot² A
= R.H.S
(ix) (cosec A - sin A)(sec A - cos A) = 1/(tan A + cot A)
L.H.S = (cosec A - sin A)(sec A - cos A) .....Equation (1)
We know that the trigonometric functions,
sec (x) = 1/cos (x)
cosec (x) = 1/sin (x)
By substituting the above relations in Equation (1)
⇒ (1/sin A - sin A)(1/cos A - cos A)
= (1 - sin² A)/sin A × (1 - cos² A)/cos A
= cos² A sin² A/sin A cos A
= sin A cos A/1
= sin A cos A/(sin² A + cos² A) [(sin² A + cos² A) = 1]
= 1/sin² A + cos² A [Dividing numerator and denominator by (sin A cos A)]
= 1/ [(sin² A/sin A cos A) + (cos² A/sin A cos A)]
= 1/[(sin A/cos A) + (cos A/sin A)]
= 1/(tan A + cot A)
= RHS
(x) (1 + tan² A)/(1 + cot² A) = (1 - tan A/1 - cot A)² = tan² A
Taking LHS, (1 + tan² A)/(1 + cot² A)
= sec² A/cosec² A
= (1/cos2A)/(sin2A)
= (1/cos² A) × (sin² A/1)
= tan² A
= RHS
Taking,-(1 - tan A/1 - cot A)²
= [(1 - tan A)/(1 - 1/tan A)]²
= [(1 - tan A)/(tan A - 1)/tan A]²
= ((1 - tan A) × tan A(tan A - 1))²
=(-tanA)²
= tan² A
= R.H.S
Hence, L.H.S = R.H.S.
☛ Check: NCERT Solutions for Class 10 Maths Chapter 8
Video Solution:
Prove the following identities, where the angles involved are acute angles for which the expressions are defined(i) (cosecθ - cotθ)² = (1 - cosθ)/(1 + cosθ)(ii) cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A(iii) tanθ/(1 - cotθ) + cotθ/(1 - tanθ) = 1 + secθ cosecθ [Hint : Write the expression in terms of sin θ and cos θ](iv) (1 + sec A)/sec A = sin² A/(1 - cos A) [Hint :Simplify LHS and RHS separately](v) (cos A - sin A + 1)/(cos A + sin A + 1) = cosec A + cot A, using the identity cosec2 A = 1 + cot2 A.(vi) √1 + sin A/1 - sin A = sec A+ tan A(vii) (sinθ - 2sin³θ)/(2cos³θ - cosθ) = tanθ(viii) (sin A + cosec A)² + (cos A + sec A)² = 7 + tan² A + cot² A(ix) (cosec A - sin A)(sec A - cos A) = 1/(tan A + cot A) [Hint : Simplify LHS and RHS separately](x) (1 + tan² A)/(1 + cot² A) = (1 - tan A / 1 - cot A)² = tan² A
Maths NCERT Solutions Class 10 Chapter 8 Exercise 8.4 Question 5
Summary:
We have proved the following identities, where the angles involved are acute angles for which the expressions are defined (i) (cosecθ - cotθ)2 = (1 - cosθ)/(1 + cosθ) (ii) cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A (iii) tanθ/(1 - cotθ) + cotθ/(1 - tanθ) = 1 + secθ cosecθ (iv) (1 + sec A)/sec A = sin² A/(1 - cos A) (v) (cos A - sin A + 1)/cos A + sin A + 1 = cosec A + cot A (vi) √(1 + sin A/1 - sin A) = sec A+ tan A (vii) (sinθ - 2sin³ θ)/(2cos³ θ - cosθ) = tanθ (viii) (sin A + cosec A)² + (cos A + sec A)² = 7 + tan² A + cot² A (ix) (cosec A - sin A)(sec A - cos A) = 1/(tan A + cot A) (x) (1 + tan² A)/(1 + cot² A) = (1 - tan A / 1 - cot A)² = tan² A
☛ Related Questions:
- Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
- Write all the other trigonometric ratios of ∠A in terms of sec A.
- Evaluate:(i) (sin² 63° + sin² 27) / (cos² 17° + cos² 73°)(ii) sin 25° cos 65° + cos 25° sin 65°
- Choose the correct option. Justify your choice.(i) 9 sec2A - 9 tan2A = _______(A) 1 (B) 9 (C) 8 (D) 0(ii) (1 + tanθ + secθ) (1 + cotθ - cosecθ)(A) 0 (B) 1 (C) 2 (D) -1(iii) (sec A + tan A) (1 - sin A) = _______(A) sec A (B) sin A (C) cosec A (D) cos A(iv) 1 + tan² A/(1 + cot² A)(A) sec 2A (B) -1 (C) cot 2A (D) tan 2A
visual curriculum