Prove the following: [cos (π + x) cos (-x)] / [sin (π - x) cos (π/2 + x)] = cot2x
Solution:
LHS :
[cos (π + x) cos (-x)] / [sin (π - x) cos (π/2 + x)]
= [(-cos x) × (cos x)] / [ (sin x) × (-sin x)]
[Since cos (π + x) = -cos x, cos(-x) = cos x, cos (π/2 + x) = -sin x, and sin (π-x) = sinx]
= -cos2x / -sin2x
= cot2x
[because cot x = cos x / sin x]
= RHS
NCERT Solutions Class 11 Maths Chapter 3 Exercise 3.3 Question 8
Prove the following: [cos (π + x) cos (-x)] / [sin (π - x) cos (π/2 + x)] = cot2x
Summary:
We got, [cos (π + x) cos (-x)] / [sin (π - x) cos (π/2 + x)] = cot2x. Hence Proved
Math worksheets and
visual curriculum
visual curriculum