Prove that y = 4 sinθ/(2 + cosθ) - θ is an increasing function of θ in [0, π/2]
Solution:
We have,
y = 4 sin θ / (2 + cosθ) - θ
Therefore,
dy/dθ = (2 + cosθ)(4 cosθ) - 4sinθ (- sinθ)/(2 + cosθ)2 - 1
= (8 cosθ + 4 cos2 θ + 4sin2 θ)/(2 + cosθ)2 - 1
= (8 cosθ + 4)/(2 + cosθ)2 - 1
Now, dy/dθ = 0
Hence,
(8 cosθ + 4)/(2 + cosθ)2 = 1
⇒ 8 cosθ + 4 = 4 + cos2 θ + 4 cosθ
⇒ cos2 θ - 4 cosθ = 0
⇒ cosθ (cosθ - 4) = 0
⇒ cosθ = 0 or cosθ = 4
Since, cosθ ≠ 4
Therefore,
cos θ = 0
⇒ θ = π/2
Now,
dy/dθ = (8 cosθ + 4 - (4 + cos2 θ + 4 cosθ))/(2 + cosθ)2
= (4 cosθ - cos2 θ)/(2 + cosθ)2
= (cos(4 - cosθ))/(2 + cosθ)2
In interval [0, π/2],
we have cosθ > 0
Also,
⇒ 4 > cosθ
⇒ 4 - cosθ > 0
Hence,
cosθ (4 - cosθ) > 0 and also (2 + cosθ)2 > 0
Therefore,
cosθ (4 - cosθ)/(2 + cosθ)² > 0
Hence, dy/dθ > 0
So, y is strictly increasing in [0, π/2] and the given function is continuous at x = 0 and x = π/2.
Thus, y is increasing in the interval [0, π/2]
NCERT Solutions Class 12 Maths - Chapter 6 Exercise 6.2 Question 9
Prove that y = 4 sinθ/(2 + cosθ) - θ is an increasing function of θ in [0, π/2]
Summary:
Hence we have proved that y = 4 sinθ/(2 + cosθ) - θ is an increasing function of θ in [0, π/2]
visual curriculum