Prove that sin6 θ + cos6 θ + 3 sin2 θ cos2 θ = 1
Solution:
We know that
sin2 θ + cos2 θ = 1
Let us cube on both sides
(sin2 θ + cos2 θ)3 = 1
By using the algebraic identity
(a + b)3 = a3 + b3 + 3ab (a + b)
(sin2 θ)3 + (cos2 θ)3 + 3 sin2 θ cos2 θ (sin2 θ + cos2 θ) = 1
So we get
sin6 θ + cos6 θ + 3 sin2 θ cos2 θ = 1
Therefore, it is proved.
✦ Try This: If x sin3 θ + y cos3 θ = cos θ sin θ and x sin θ = y cos θ then prove that x2 + y2 = 1.
The equation given is
x sin3 θ + y cos3 θ = cos θ sin θ ….. (1)
x sin θ = y cos θ …. (2)
Substituting equation (2) in (1)
x sin3 θ + x sin θ cos2 θ = cos θ sin θ
Divide both sides by sin θ
x sin2 θ + x cos2 θ = cos θ ….. (3)
Taking out the common terms
x [sin2 θ + cos2 θ] = cos θ
x = cos θ
Substituting x value in equation (2)
y = sin θ
So from equation (1)
xy3 + yx3 = xy
Taking out the common terms
xy (x2 + y2) = xy
Divide both sides by xy
x2 + y2 = 1
Therefore, it is proved.
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 8
NCERT Exemplar Class 10 Maths Exercise 8.3 Sample Problem 1
Prove that sin6 θ + cos6 θ + 3 sin2 θ cos2 θ = 1
Summary:
It is proved that sin6 θ + cos6 θ + 3 sin2 θ cos2 θ = 1
☛ Related Questions:
visual curriculum