Prove that √(sec2θ + cosec2θ) = tanθ + cotθ
Solution:
We have to prove √(sec2θ + cosec2θ) = tanθ + cotθ
By using trigonometric identities,
1 + tan2 A = sec2 A
cot2 A + 1 = cosec2 A
LHS: √(sec2θ + cosec2θ)
sec2θ = 1 + tan2θ
cosec2θ = 1 + cot2θ
So, √(sec2θ +cosec2θ) = √(1 + tan2θ + 1 + cot2θ)
= √( tan2θ + 2 + cot2θ) ------------- (1)
By using algebraic identity,
(a + b)2 = a2 + 2ab + b2 ------------- (2)
Comparing (1) and (2)
a2 = tan2θ
2ab = 2 tanθ cotθ
b2 = cot2θ
So, √( tan2θ + 2 + cot2θ) = √( tan2θ + 2 tanθ cotθ + cot2θ)
We know that tanθ × cotθ = 1
Now, √( tan2θ + 2 + cot2θ) = √( tanθ + cotθ)2
√( tan2θ + 2 + cot2θ) = tanθ + cotθ
= RHS
LHS = RHS
Therefore, √(sec2θ +cosec2θ) = tanθ + cotθ
✦ Try This: Prove that sinθ(1 + tanθ) + cosθ(1 + cotθ) = (secθ + cosecθ)
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 8
NCERT Exemplar Class 10 Maths Exercise 8.4 Problem 2
Prove that √(sec2θ + cosec2θ) = tanθ + cotθ
Summary:
The cotangent of an angle in a right triangle is defined as the ratio of the adjacent side (the side adjacent to the angle) to the opposite side (the side opposite to the angle). It is proved that √(sec²θ +cosec²θ) = tanθ + cotθ
☛ Related Questions:
visual curriculum