Prove that (1+secθ-tanθ)/(1+secθ+tanθ) = (1-sinθ)/cosθ
Solution:
We have to prove that (1 + secθ - tanθ)/(1 + secθ + tanθ) = (1 - sinθ)/cosθ
Considering LHS,
LHS : (1 + secθ - tanθ)/(1 + secθ + tanθ)
By using trigonometric identity,
sec² A - tan² A = 1
(1 + secθ - tanθ) = secθ - tanθ + (sec²θ - tan²θ)
= (secθ - tanθ) + [(secθ - tanθ)(secθ + tanθ)]
Taking out common term,
= (secθ - tanθ)[1 + secθ + tanθ]
Now, (1 + secθ - tanθ)/(1 + secθ + tanθ) = (secθ - tanθ)[1 + secθ + tanθ] / (1 + secθ + tanθ)
= (secθ - tanθ)
We know that sec A = 1/cos A and tan A = sin A/cos A
So, (secθ - tanθ) = (1/cosθ - sinθ/cosθ)
= (1 - sinθ)/cosθ
= RHS
LHS = RHS
Therefore, (1 + secθ - tanθ)/(1 + secθ + tanθ) = (1 - sinθ)/cosθ
✦ Try This: Prove that : (cosecθ - sinθ)(secθ - cosθ) = 1/(tanθ + cotθ)
Considering LHS,
LHS = (cosecθ - sinθ)(secθ- cosθ)
We know that cosec A = 1/sin A and sec A = 1/cos A
So, cosecθ - sinθ = 1/sinθ - sinθ
= (1 - sin²θ)sinθ
By using trigonometric identities,
1 - sin² A = cos² A
1 - cos²A = sin²A
= cos²θ/sinθ
sec θ - cosθ = 1/cosθ - cosθ
= (1 - cos²θ)cosθ
= sin²θ/cosθ
Now, (cosecθ - sinθ)(secθ - cosθ) = (cos²θ/sinθ)(sin²θ/cosθ)
= sinθ cosθ
Considering RHS,
RHS = 1/(tanθ + cotθ)
We know that tan A = sin A/cos A and cot A = cos A/sin A
= 1/(sinθ/cosθ + cosθ/sinθ)
= 1/(sin²θ + cos²θ)/sinθcosθ
By using trigonometric identity,
cos² A + sin² A = 1
= sinθcosθ
LHS = RHS
Therefore, (cosecθ - sinθ)(secθ - cosθ) = 1/(tanθ + cotθ)
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 8
NCERT Exemplar Class 10 Maths Exercise 8.4 Problem 12
Prove that (1+secθ-tanθ)/(1+secθ+tanθ) = (1-sinθ)/cosθ
Summary:
It is proven that (1+secθ-tanθ)/(1+secθ+tanθ) = (1-sinθ)/cosθ
☛ Related Questions:
- The angle of elevation of the top of a tower 30 m high from the foot of another tower in the same pl . . . .
- From the top of a tower h m high, the angles of depression of two objects, which are in line with th . . . .
- A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled awa . . . .
visual curriculum