Let x̄ be the mean of x1 , x2 , ... , xn and ȳ the mean of y1 , y2 , ... , yn . If z̄ is the mean of x1 , x2 , ... , xn , y1 , y2 , ... , yn , then z̄ is equal to
a. x̄ + ȳ
b. (x̄ + ȳ)/2
c. (x̄ + ȳ)/n
d. (x̄ + ȳ)/2n
Solution:
It is given that
\(\sum_{i=1}^{n}x_{i}=n\overline{x}\: and\: \sum_{i=1}^{n}y_{i}=n\overline{y}\) …. (1)
As \(\overline{x}=\frac{\sum_{i=1}^{n}x_{i}}{n}\)
z̄ = (x1 + x2 + ….. +xn) + (y1 + y2 + …. + yn)/n + n
So we get
z̄ = \(\frac{\sum_{i=1}^{n}x_{i}+\sum_{j=1}^{n}y_{i}}{2n}\)
z̄ = (nx̄ + nȳ)/2n [From equation (1)]
Taking out n as common
z̄ = (x̄ + ȳ)/2
Therefore, z̄ is equal to (x̄ + ȳ)/2.
✦ Try This: The mean of five numbers is 16. If one number is excluded, their mean becomes 12. The excluded number is :
☛ Also Check: NCERT Solutions for Class 9 Maths Chapter 14
NCERT Exemplar Class 9 Maths Exercise 14.1 Problem 15
Let x̄ be the mean of x1 , x2 , ... , xn and ȳ the mean of y1 , y2 , ... , yn . If z̄ is the mean of x1 , x2 , ... , xn , y1 , y2 , ... , yn , then z̄ is equal to a. x̄ + ȳ, b. (x̄ + ȳ)/2, c. (x̄ + ȳ)/n, d. (x̄ + ȳ)/2n
Summary:
Let x̄ be the mean of x1 , x2 , ... , xn and ȳ the mean of y1 , y2 , ... , yn . If z̄ is the mean of x1 , x2 , ... , xn , y1 , y2 , ... , yn , then z̄ is equal to (x̄ + ȳ)/2
☛ Related Questions:
- If x̄ is the mean of x1 , x2 , ... , xn , then for a ≠ 0, the mean of ax1 , ax2 , ..., axn , x1/a, x . . . .
- If x̄1, x̄2, x̄3, ….., x̄n are the means of n groups with n1 , n2 , ... , nn number of observations . . . .
- The mean of 100 observations is 50. If one of the observations which was 50 is replaced by 150, the . . . .
visual curriculum