In Fig. 6.15, ∠PQR = ∠PRQ, then prove that ∠PQS = ∠PRT.
Solution:
Given: ∠PQR = ∠PRQ
To prove: ∠PQS = ∠PRT
We know that, if a ray stands on a line, then the sum of adjacent angles formed is 180°.
Let ∠PQR = ∠PRQ = a.
Let ∠PQS = b and ∠PRT = c.
Lines ST and PQ intersect at point Q, hence the sum of adjacent angles ∠PQS and ∠PQR is 180°.
∠PQS + ∠PQR = 180°
b + a = 180°
b = 180° - a….(1)
Lines ST and PR intersect at point R, hence the sum of adjacent angles ∠PRQ and ∠PRT is 180°.
∠PRQ + ∠PRT = 180°
a + c = 180°
c = 180° - a ….(2)
From equations (1) and (2), it is clear that b = c. Hence ∠PQS = ∠PRT is proved.
☛ Check: NCERT Solutions Class 9 Maths Chapter 6
Video Solution:
In Fig. 6.15, ∠PQR = ∠PRQ then prove that ∠PQS = ∠PRT.
NCERT Solutions Class 9 Maths Chapter 6 Exercise 6.1 Question 3
Summary:
In Fig. 6.15, given that ∠PQR = ∠PRQ, hence we have proved that ∠PQS = ∠PRT.
☛ Related Questions:
- In Fig. 6.13, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.
- In Fig. 6.14, lines XY and MN intersect at O. If ∠POY = 90° and a : b = 2 : 3, find c.
- In Fig. 6.16, if x + y = w + z, then prove that AOB is a line.
- In Fig. 6.17, POQ is a line. Ray OR, is perpendicular to line PQ. OS another ray lying between rays OP and OR. Prove that ∠ROS = 1/2 (∠QOS - ∠POS).
visual curriculum