In Fig. 6.22, line segment DF intersect the side AC of a triangle ABC at the point E such that E is the mid-point of CA and ∠AEF = ∠AFE . Prove that BD/CD = BF/CE
Solution:
Given, line segment DF intersects the side AC of a triangle ABC at E.
E is the midpoint of CA
Also, ∠AEF = ∠AFE
We have to prove that BD/CD = BF/CE
Since E is the midpoint of CA, then
CE = AE --------------- (1)
Given, ∠AEF = ∠AFE ---------------- (2)
So, AE = AF ------------------- (3)
From (1) and (3),
CE = AE = AF --------------- (4)
Now, draw CG parallel to DF,
From the figure,
The corresponding angles are equal. i.e., ∠AEF = ∠ACG ------------ (5)
Also, ∠AFE = ∠AGC ---------------- (6)
From (2), (5) and (6),
∠AFE = ∠AEF = ∠ACG = ∠AGC
We know that sides opposite to equal angles are equal.
So, AC = AG ---------------- (7)
We know, AC = CE + AE
AG = AF + GF
So, (7) becomes CE + AE = AF + GF
From (4) and (7),
AE = CE = AF = GF
CE = AF = GF ----------------- (8)
Basic Proportionality Theorem(BPT) states that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
By BPT,
CB/DC = BG/GF
Adding 1 on both sides,
CB/DC + 1 = BG/GF + 1
CB+DC / DC = BG+GF / GF
From the figure,
CB + CD = BD
BG + GF = BF
So, BD/DC = BF/GF
Therefore, it is proven that BD/DC = BF/GF
✦ Try This: The side BC of a triangle ABC is bisected at D; O is any point in AD,BO and CO produced to meet AC and AB in E and F respectively and AD is produced to X so that D is the mid-point of OX. Prove that AO:AX = AF:AB and show that FE || BC.
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 6
NCERT Exemplar Class 10 Maths Exercise 6.4 Problem 16
In Fig. 6.22, line segment DF intersect the side AC of a triangle ABC at the point E such that E is the mid-point of CA and ∠AEF = ∠AFE . Prove that BD/CD = BF/CE
Summary:
In Fig. 6.22, line segment DF intersect the side AC of a triangle ABC at the point E such that E is the mid-point of CA and ∠AEF = ∠AFE . It is proved that BD/CD = BF/CE
☛ Related Questions:
- O is the point of intersection of the diagonals AC and BD of a trapezium ABCD with AB || DC. Through . . . .
- Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to . . . .
- Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle i . . . .
visual curriculum