In fig. 6.20, l||m and line segments AB, CD and EF are concurrent at point P. Prove that AE/BF = AC/BD = CE/FD
Solution:
Given, l || m
The line segments AB, CD and EF are concurrent at point P.
We have to prove that AE/BF = AC/BD = CE/FD
The points A, E and C lie on l.
The points D, F and B lie on m.
In △APC and △PDB,
Vertically opposite angles are equal. i.e.,∠APC = ∠DPB
Alternate angles are equal i.e., ∠PAC = ∠PBD
AAA criterion states that if two angles of a triangle are respectively equal to two angles of another triangle, then by the angle sum property of a triangle their third angle will also be equal.
By AAA criterion, △APC ⩬ △PDB
By the property of similarity,
The corresponding sides are proportional.
AP/PB = PC/PD = AC/DB -------------- (1)
In △APE and △PBF,
Vertically opposite angles are equal. i.e.,∠APE = ∠BPF
Alternate angles are equal i.e., ∠PAE = ∠PBF
AAA criterion states that if two angles of a triangle are respectively equal to two angles of another triangle, then by the angle sum property of a triangle their third angle will also be equal.
By AAA criterion, △APE ⩬ △BPF
By the property of similarity,
The corresponding sides are proportional.
AP/PB = AE/FB = EP/FP ------------------------ (2)
In △CPE and △PDF,
Vertically opposite angles are equal. i.e.,∠CPE = ∠DPF
Alternate angles are equal i.e., ∠PCE = ∠PDF
AAA criterion states that if two angles of a triangle are respectively equal to two angles of another triangle, then by the angle sum property of a triangle their third angle will also be equal.
By AAA criterion, △CPE ⩬ △PDF
By the property of similarity,
The corresponding sides are proportional.
So, EP/FP = PC/PD = CE/DF ----------------- (3)
Equating (1), (2) and (3), we get,
AP/PB = PC/PD = AC/DB = AP/PB = AE/FB = EP/FP = EP/FP = PC/PD = CE/DF
Cancelling out common terms,
AC/DB = AP/PB = AE/FB = CE/DF = EP/FP ------------------------- (4)
From (4), AE/BF = AC/BD = CE/FD
Therefore, it is proved that AE/BF = AC/BD = CE/FD
✦ Try This: In the adjoining figure, ABCD is a ||gm in which E and F are the midpoints of AB and CD respectively. If GH is a line segment that cuts AD, EF and BC at G, P and H respectively, prove that GP = PH.
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 6
NCERT Exemplar Class 10 Maths Exercise 6.4 Problem 13
In fig. 6.20, l||m and line segments AB, CD and EF are concurrent at point P. Prove that AE/BF = AC/BD = CE/FD
Summary:
In fig. 6.20, l||m and line segments AB, CD and EF are concurrent at point P. It is proven that AE/BF = AC/BD = CE/FD by AAA criterion which states that if two angles of a triangle are respectively equal to two angles of another triangle, then by the angle sum property of a triangle their third angle will also be equal
☛ Related Questions:
- In Fig. 6.21, PA, QB, RC and SD are all perpendiculars to a line l, AB = 6 cm, BC = 9 cm, CD = 12 cm . . . .
- O is the point of intersection of the diagonals AC and BD of a trapezium ABCD with AB || DC. Through . . . .
- In Fig. 6.22, line segment DF intersect the side AC of a triangle ABC at the point E such that E is . . . .
visual curriculum