If x̄ represents the mean of n observations x1 , x2 , ..., xn , then value of \(\sum_{i=1}^{n}(x_{i}-\overline{x})\) is:
a. -1
b. 0
c. 1
d. n - 1
Solution:
It is given that
\(\\\overline{x}=\frac{\sum_{i=1}^{n}x_{i}}{n}\\\\It\: can\: be\: written\: as\\\\\sum_{i=1}^{n}x_{i}=n\overline{x}....(1)\\\\\sum_{i=1}^{n}(x_{i}-\overline{x}) =\sum_{i=1}^{n}x_{i}-\sum_{i=1}^{n}\overline{x}\\\\=n\overline{x} -\overline{x}\sum_{i=1}^{n}1(using \: equation (1))\\\\ =n\overline{x}-\overline{x}n(As\sum_{i=1}^{n}1=n)\)
= 0
Therefore, the value is 0.
✦ Try This: If the mean of the observations : x + 4, x + 8, x + 12, x + 16, x + 20 is 8, the mean of the last three observations is
☛ Also Check: NCERT Solutions for Class 9 Maths Chapter 14
NCERT Exemplar Class 9 Maths Exercise 14.1 Problem 13
If x̄ represents the mean of n observations x1 , x2 , ..., xn , then value of \(\sum_{i=1}^{n}(x_{i}-\overline{x})\) is: a. -1, b. 0, c. 1, d. n - 1
Summary:
In statistics, the mean for a given set of observations is equal to the sum of all the values of a collection of data divided by the total number of values in the data. If x̄ represents the mean of n observations x1 , x2 , ..., xn, then the value is 0
☛ Related Questions:
- If each observation of the data is increased by 5, then their mean a. remains the same, b. becomes 5 . . . .
- Let x̄ be the mean of x1 , x2 , ... , xn and ȳ the mean of y1 , y2 , ... , yn . If z̄ is the mean of . . . .
- If x̄ is the mean of x1 , x2 , ... , xn , then for a ≠ 0, the mean of ax1 , ax2 , ..., axn , x1/a, x . . . .
visual curriculum