If x - iy = √(a - ib)/(c - id) , Prove that: (x² + y²)² = (a²+ b²)/(c² + d²)
Solution:
It is given that,
x - iy = √(a - ib)/(c - id)
We will rationalize the denominator here
x - iy = √[ (a - ib)/(c - id) · (c + id) / (c + id) ]
= √ [(ac + bd) + i (ad - bc)] / [c2 + d2]
Squaring on both sides,
(x2 - y2) - i (2xy) = (ac + bd) / (c2 + d2) + i (ad - bc) / (c2 + d2)
Comparing the real and imaginary parts,
x2 - y2 = (ac + bd) / (c2 + d2) and 2xy = (ad - bc) / (c2 + d2) ... (1)
Now we will start with LHS of what needs to be proved.
LHS = (x2 + y2)2
= (x2 - y2)2 + 4x2y2
= (ac + bd)2 / (c2 + d2)2 + (ad - bc)2 / (c2 + d2)2 (From (1))
= (a2c2 + b2d2 + 2abcd) / (c2 + d2)2 + (a2d2 + b2c2 - 2abcd) / (c2 + d2)2
= (a2c2 + b2d2 + a2d2 + b2c2 ) / (c2 + d2)2
= (a2 (c2 + d2) + b2 (c2 + d2)) / (c2 + d2)2
= (c2 + d2) (a2 + b2) / (c2 + d2)2
= (a2 + b2) / (c2 + d2)
= RHS
Hence we proved that (x² + y²)² = (a²+ b²)/(c² + d²)
NCERT Solutions Class 11 Maths Chapter 5 Exercise ME Question 4
If x - iy = √(a - ib)/(c - id) , Prove that: (x² + y²)² = (a²+ b²)/(c² + d²)
Solution:
Hence we proved that (x² + y²)² = (a²+ b²)/(c² + d²)
visual curriculum