If the function f (x) satisfies limₓ→₁ (f (x) - 2) / (x² - 1) = π, evaluate limₓ→₁ f (x)
Solution:
It is given that the function f (x) satisfies the limit limₓ→₁ (f (x) - 2)/(x² - 1) = π
⇒ (limₓ→₁ f (x) - 2) / (limₓ→₁(x² - 1)) =π
⇒ limₓ→₁ (f (x) - 2) = π limₓ→₁ (x2 - 1)
⇒ limₓ→₁ (f (x) - 2) = π (12 - 1)
⇒ limₓ→₁ (f (x) - 2) = 0
⇒ limₓ→₁ f (x) - limₓ→₁ 2 = 0
⇒ limₓ→₁ f (x) - 2 = 0
⇒ limₓ→₁ f (x) = 2
Hence, limₓ→₁ f (x) = 2
NCERT Solutions Class 11 Maths Chapter 13 Exercise 13.1 Question 31
If the function f (x) satisfies limₓ→₁ (f (x) - 2) / (x² - 1) = π, evaluate limₓ→₁ f (x).
Summary:
If the function f (x) satisfies limₓ→₁ (f (x) - 2) / (x² - 1) = π, then limₓ→₁ f (x) = 2
Math worksheets and
visual curriculum
visual curriculum