If tanθ + secθ = l, then prove that secθ = l2 + 1/2l
Solution:
Given, tanθ + secθ = l ---------------------- (1)
We have to prove that secθ = l² + 1/2l
Considering LHS: tanθ + secθ
Multiplying and dividing by (secθ - tanθ),
(tanθ + secθ)(secθ - tanθ)/(secθ - tanθ)
By using algebraic identity,
(a² - b²) = (a - b)(a + b)
So, (tanθ + secθ)(secθ - tanθ) = (sec²θ - tan²θ)
Now LHS = (sec²θ - tan²θ) / (secθ - tanθ)
By using trigonometric identity,
1 + tan² A = sec² A
On rearranging,
sec² A - tan² A = 1
So, (sec²θ - tan²θ) / (secθ - tanθ) = 1/(secθ - tanθ)
Now, 1/(secθ - tanθ) = l
(secθ - tanθ) = 1/l ---------------------- (2)
Adding (1) and (2),
(tanθ + secθ) + (secθ - tanθ) = l + 1/l
2secθ = l + 1/l
On simplification,
2secθ = (l² + 1)/l
secθ = (l² + 1)/2l
Therefore, secθ = l² + 1/2l
✦ Try This: If secθ = x, write the value of tanθ.
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 8
NCERT Exemplar Class 10 Maths Exercise 8.4 Problem 9
If tanθ + secθ = l, then prove that secθ = l2 + 1/2l
Summary:
The tangent function can be expressed as the ratio of the sine function and cosine function. If tanθ + secθ = l, it is proven that secθ = l²+1/2l
☛ Related Questions:
visual curriculum