If sinθ + cosθ = p and secθ + cosecθ = q, then prove that q (p2 - 1) = 2p
Solution:
Given, sinθ + cosθ = p and secθ + cosecθ = q
We have to prove that q (p² - 1) = 2p.
Considering LHS: q (p² - 1)
Substituting the value of p and q,
(secθ + cosecθ)[(sinθ + cosθ)² - 1]
By using algebraic identity,
(a + b)² = a² + 2ab + b²
(sinθ + cosθ)² = sin²θ + 2sinθ cosθ + cos²θ
By using trigonometric identity,
cos² A + sin² A = 1
So, sin²θ + 2sinθ cosθ + cos²θ = 1 + 2sinθ cosθ
Now, [(sinθ + cosθ)² - 1] = 1 + 2sinθ cosθ - 1
= 2sinθ cosθ
Now, (secθ + cosecθ)[(sinθ + cosθ)² - 1] = (secθ + cosecθ)(2sinθ cosθ)
We know that sec A = 1/cos A and cosec A = 1/sin A
= (1/cosθ + 1/sinθ)(2sinθ cosθ)
On simplification,
= [(sinθ + cosθ)/sinθ cosθ](2sinθ cosθ)
= 2(sinθ + cosθ)
= 2p
= RHS
LHS = RHS
Therefore, q (p² - 1) = 2p.
✦ Try This: Prove that : (cosecθ - sinθ)(secθ - cosθ) = 1/(tanθ + cotθ).
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 8
NCERT Exemplar Class 10 Maths Exercise 8.4 Problem 10
If sinθ + cosθ = p and secθ + cosecθ = q, then prove that q (p2 - 1) = 2p
Summary:
If sinθ + cosθ = p and secθ + cosecθ = q, then it is proven that q (p² - 1) = 2p
☛ Related Questions:
visual curriculum