If sinA + sin2 A = 1, then the value of the expression (cos2 A + cos4 A) is
a. 1
b. 1/2
c. 2
d. 3
Solution:
Given, sinA + sin2 A = 1
It can be written as
sin A = 1 - sin2 A …. (1)
We have to find the value of (cos2 A + cos4 A)
Using the trigonometric identities,
cos2 A = 1 - sin2 A ….. (2)
From both the equations
sin A = cos2 A
Now, (cos2 A + cos4 A) = (cos2A + (sin A)2)
= cos2A + sin2A
Using the trigonometric identities,
cos2 A + sin2 A = 1
Therefore, (cos2 A + cos4 A) = 1
✦ Try This: If cosA + cos2 A = 1, then the value of the expression (cos A/sin2A) is
Given, cosA + cos2 A = 1
It can be written as
cos A = 1 - cos2 A ….. (1)
We have to find the value of the expression (cos A/sin2A)
Using the trigonometric identities,
sin2 A = 1 - cos2 A …. (2)
From both the equations
cos A = sin2 A
Now, cos A/sin2A = sin2A/sin2A
= 1
Therefore, the value of the expression (cos A/sin2A) is 1.
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 8
NCERT Exemplar Class 10 Maths Exercise 8.1 Problem 9
If sinA + sin2 A = 1, then the value of the expression (cos2 A + cos4 A) is a. 1, b. 1/2, c. 2, d. 3
Summary:
If sinA + sin2 A = 1, then the value of the expression (cos2 A + cos4 A) is 1
☛ Related Questions:
visual curriculum