If sin (sin- 1 1/5 + cos- 1 x) = 1, find the value of x
Solution:
Inverse trigonometric functions as a topic of learning are closely related to the basic trigonometric ratios.
It is given that
sin (sin- 1 1/5 + cos- 1 x) = 1
Since we know that sin (x + y)
= sin x cos y + cos x sin y [ using trigonometric identities]
Therefore,
sin (sin- 1 1/5 cos(cos- 1 x) + cos (sin- 1 1/5) sin (cos- 1 x) = 1
(1/5) x (x) + cos (sin- 1 1/5) sin (cos- 1 x) = 1
x/5 + cos (sin- 1 1/5) sin (cos- 1 x) = 1 ....(1)
Now, let sin- 1 1/5 = y
⇒ sin y = 1/5
Then,
cos y = √1 - (1/5)²
= (2√6/5)
= cos- 1 (2√6/5)
Therefore,
sin- 1 1/5 = cos- 1 (2√6/5) ....(2)
Now, let cos- 1 x = z
⇒ cos z = x
Then,
sin z = √1 - x²
z = sin- 1 √1 - x²
Therefore,
cos- 1 x = sin- 1 √1 - x² ....(3)
From (1), (2) and (3) , we have
⇒ x/5 + cos (cos- 1 (2√6/5)) sin (sin- 1 √1 - x²) = 1
⇒ x/5 + (2√6/5)√1 - x² = 1
⇒ x + (2√6)√1 - x² = 5
⇒ 5 - x = (2√6)√1 - x²
On squaring both the sides
25 + x2 -10x = 24 - 24x2
25x2 - 10x + 1 = 0
(5x - 1)2 = 0
(5x - 1) = 0
x = 1 / 5
NCERT Solutions for Class 12 Maths - Chapter 2 Exercise 2.2 Question 14
If sin (sin- 1 1/5 + cos- 1 x) = 1, find the value of x
Summary:
Given that sin (sin- 1 1/5 + cos- 1 x) = 1, the value of x is 1 / 5. Inverse trigonometric functions as a topic of learning are closely related to the basic trigonometric ratios
visual curriculum