If cosecθ + cotθ = p, then prove that cosθ = p2 -1 / p2+1
Solution:
Given, cosecθ + cotθ = p ----------- (1)
We have to prove that cosθ = p² - 1 / p² + 1
Using trigonometric identities,
cot² A + 1 = cosec² A
So, cosec² A - cot² A = 1
By using algebraic identity,
(a² - b²) = (a + b)(a - b)
(cosec θ - cot θ)(cosec θ + cot θ) = 1
(cosec θ - cot θ)(P) = 1
cosec θ - cot θ = 1/P ---------------------- (2)
Adding (1) and (2),
cosec θ - cot θ + cosec θ + cot θ = P + 1/P
2cosec θ = P + 1/P
cosec θ = (P + 1/P)/2
Subtracting (1) and (2),
cosec θ + cot θ - cosec θ + cot θ = P - 1/P
2cot θ = (P - 1/P)
cot θ = (P - 1/P)/2 -------------------------- (3)
Dividing (3) by (2),
cot θ / cosec θ = (P - 1/P)/2 / (P + 1/P)/2
cot θ / cosec θ = (P - 1/P) / (P + 1/P)
We know, cot A = cos A/sin A
Also, cosec A = 1/sin A
Now, cot θ/cosec θ = (cos θ/sin θ) / (1/sin θ)
= (cos θ/sin θ)(sin θ)
= cos θ
So, cos θ = (P - 1/P) / (P + 1/P)
= (P² - 1)/P / (P² + 1)/P
= (P² - 1)/(P² + 1)
Therefore, cos θ = (P² - 1)/(P² + 1)
✦ Try This: Prove the following identities: (cosθ - sinθ + 1)/(cosθ + sinθ - 1) = cosecθ + cotθ
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 8
NCERT Exemplar Class 10 Maths Exercise 8.4 Problem 1
If cosecθ + cotθ = p, then prove that cosθ = p2 -1 / p2+1
Summary:
Trigonometry is the branch of mathematics that deals with the relationship between ratios of the sides of a right-angled triangle with its angles. If cosecθ + cotθ = p. It is proven that cosθ = p² -1 / p²+1
☛ Related Questions:
visual curriculum