If cos (α + β) = 0, then sin (α - β) can be reduced to
a. cos β
b. cos 2β
c. sin α
d. sin 2α
Solution:
Given, cos(α + β) = 0
We have to find the value of sin(α - β)
From the trigonometric ratios,
Given, cos(α + β) = 0
(α + β) = cos-1(0)
Cos is zero at 90°
So, (α + β) = 90°
Now, α = 90° - β
Substitute the value of α,
sin(α - β) = sin (90° - β - β)
= sin(90° - 2β )
Using the trigonometric ratio of complementary angles,
sin (90° - A) = cos A
So, sin (90° - 2β ) = cos 2β
Therefore, sin (α - β) = cos 2β
✦ Try This: If sin (α + β) = 1, then cos (α - β) can be reduced to
Given, sin(α + β) = 1
We have to find the value of cos(α - β)
From the trigonometric ratios of angles,
(α + β) = sin-1(1)
(α + β) = 90°
So, α = 90° - β
Substituting the value of α,
Now, cos (α - β) = cos (90° - β - β)
= cos (90° - 2β)
Using the trigonometric ratio of complementary angles,
cos(90° - A) = sin A
So, cos (90° - 2β) = sin 2β
Therefore, cos (α - β) can be reduced to sin 2β.
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 8
NCERT Exemplar Class 10 Maths Exercise 8.1 Problem 5
If cos (α + β) = 0, then sin (α - β) can be reduced to a. cos β, b. cos 2β, c. sin α, d. sin 2α
Summary:
If cos (α + β) = 0, then sin (α - β) can be reduced to cos 2β
☛ Related Questions:
visual curriculum