If (a + bx)/(a - bx) = (b + cx)/(b - cx) = (c + dx)/(c - dx) (x ≠ 0), then show that a, b, c and d are in G.P
Solution:
It is given that (a + bx)/(a - bx) = (b + cx)/(b - cx) = (c + dx)/(c - dx) (x ≠ 0)
Therefore,
(a + bx)/(a - bx) = (b + cx)/(b - cx)
⇒ (a + bx)(b - cx) = (b + cx)(a - bx)
⇒ ab - acx + b2x - bcx2 = ab - b2x + acx - bcx2
⇒ 2b2x = 2acx
⇒ b2 = ac
⇒ b/a = c/b ....(1)
Also,
(b + cx)/(b - cx) = (c + dx)/(c - dx)
⇒ (b + cx)(c - dx) = (b - cx)(c + dx)
⇒ bc - bdx + c2x - cdx2 = bc + bdx - c2x - cdx2
⇒ 2c2x = 2bdx
⇒ c2 = bd
⇒ c/b = d/c ....(2)
From (1) and (2) , we obtain
b/a = c/b = d/c
Thus, a, b, c and d are in G.P
NCERT Solutions Class 11 Maths Chapter 9 Exercise ME Question 13
If (a + bx)/(a - bx) = (b + cx)/(b - cx) = (c + dx)/(c - dx) (x ≠ 0), then show that a, b, c and d are in G.P
Summary:
Given that (a + bx)/(a - bx) = (b + cx)/(b - cx) = (c + dx)/(c - dx) (x ≠ 0) we found out that a, b, c and d are in a G.P by solving the equation
Math worksheets and
visual curriculum
visual curriculum