If a, b, c are all non-zero and a + b + c = 0, prove that a²/bc + b²/ca + c²/ab = 3.
Solution:
Given, a, b and c are all non-zero
Also, a + b + c = 0
We have to prove that a²/bc + b²/ca + c²/ab = 3.
Using the algebraic identity,
x³ + y³ + z³ - 3xyz = (x + y + z) (x² +y² + z² - xy - yz - zx)
If x + y + z = 0, then x³ + y³ + z³ - 3xyz = 0
So, x³ + y³ + z³ = 3xyz.
Given, a + b + c = 0
So, a³ + b³ + c³ = 3abc
Dividing both sides by 3abc,
a³/3abc + b³/3abc + c³/3abc = 3abc/3abc
a²/3bc + b²/3ca + c²/3ab = 1
a²/bc + b²/ca + c²/ab = 3
Hence proved.
✦ Try This: Find the value of k if (x-2)is a factor of polynomial p(x) = 2x³ - 6x² + 5x + k.
☛ Also Check: NCERT Solutions for Class 9 Maths Chapter 2
NCERT Exemplar Class 9 Maths Exercise 2.4 Problem 7
If a, b, c are all non-zero and a + b + c = 0, prove that a²/bc + b²/ca + c²/ab = 3
Summary:
If a, b, c are all non-zero and a + b + c = 0, using the algebraic identity it is proven that a²/bc + b²/ca + c²/ab = 3
☛ Related Questions:
visual curriculum