If a + b + c = 5 and ab + bc + ca = 10, then prove that a³ + b³ + c³ - 3abc = - 25.
Solution:
Given, a + b + c = 5 and ab + bc + ca = 10
We have to prove that a³ + b³ + c³ - 3abc = - 25.
Using the algebraic identity,
x³ + y³ + z³ - 3xyz = (x + y + z) (x² + y² + z² - xy - yz - zx)
x³ + y³ + z³ - 3xyz = (x + y + z) (x² + y² + z² - (xy + yz + zx))
a³ + b³ + c³ - 3abc = (a + b + c) (a² + b² + c² - (ab + bc + ca))
= 5(a² + b² + c² - (10))
To find a² + b² + c², by using the algebraic identity,
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(5)² = a² + b² + c² + 2(10)
25 = a² + b² + c² + 20
a² + b² + c² = 25 - 20
a² + b² + c² = 5
Now, a³ + b³ + c³ - 3abc = 5(a² + b² + c² - (10))
= 5(5 - 10)
= 5(-5)
= - 25
Therefore, a³ + b³ + c³ - 3abc = - 25
✦ Try This: Find the remainder when f(x) = 4x³ - 12x² +14x - 3 is divided by g(x) = (2x-1).
☛ Also Check: NCERT Solutions for Class 9 Maths Chapter 2
NCERT Exemplar Class 9 Maths Exercise 2.4 Problem 8
If a + b + c = 5 and ab + bc + ca = 10, then prove that a³ + b³ + c³ - 3abc = - 25
Summary:
If a + b + c = 5 and ab + bc + ca = 10, using the algebraic identity it is proven that a³ + b³ + c³ - 3abc = -25
☛ Related Questions:
visual curriculum