If a = 2 + √3 , then find the value of a - 1/a
Solution:
Given, a = 2 + √3
We have to find the value of a - 1/a.
1/a = 1/(2 + √3)
By rationalising,
1/(2 + √3) = 1/(2 + √3) × (2 - √3)/(2 - √3)
= (2 - √3) / (2 + √3)(2 - √3)
By using algebraic identity,
(a - b)² = a² - 2ab + b²
(2 + √3)(2 - √3) = (2)² - (√3)²
= 4 - 3
= 1
So, (2 - √3) / (2 + √3)(2 - √3) = (2 - √3) / (1)
= (2 - √3)
1/a = (2 - √3)
Now, a - 1/a = (2 + √3) - (2 - √3)
= 2 + √3 - 2 + √3
= 2√3
Therefore, the value of a - 1/a is 2√3.
✦ Try This: Find the values of a² - 1/a² if a = 1/(3 - 4√3).
☛ Also Check: NCERT Solutions for Class 9 Maths Chapter 1
NCERT Exemplar Class 9 Maths Exercise 1.3 Problem 12
If a = 2 + √3 , then find the value of a - 1/a
Summary:
Rationalization can be considered as the process used to eliminate a radical or an imaginary number from the denominator of an algebraic fraction. If a = 2 + √3 , then the value of a - 1/a is 2√3
☛ Related Questions:
- 4/√3. Rationalise the denominator and hence evaluate by taking √2 = 1.414, √3 = 1.732 and √5 = 2.236 . . . .
- 6/√6. Rationalise the denominator and hence evaluate by taking √2 = 1.414, √3 = 1.732 and √5 = 2.236 . . . .
- (√10 - √5)/2. Rationalise the denominator and hence evaluate by taking √2 = 1.414, √3 = 1.732 and √5 . . . .
visual curriculum