Given that sinθ + 2cosθ = 1, then prove that 2sinθ - cosθ = 2
Solution:
Given, sinθ + 2cosθ = 1
We have to prove that 2sinθ - cosθ = 2.
Squaring on both sides,
(sinθ + 2cosθ)² = 1
By using algebraic identity,
(a + b)² = a² + 2ab + b²
So, (sinθ + 2cosθ)² = sin²θ + 4sinθ cosθ + 4cos²θ
Now, sin²θ + 4sinθ cosθ + 4cos²θ = 1
By using trigonometric identity,
cos² A = 1 - sin² A
sin² A = 1 - cos² A
So, (1 - cos² θ) + 4sinθ cosθ + 4(1 - sin² θ) = 1
1 - cos²θ + 4 - 4sin²θ + 4 sinθ cosθ = 1
5 - cos²θ - 4sin²θ + 4 sinθ cosθ = 1
On rearranging,
5 - 1 = cos²θ + 4sin²θ - 4 sinθ cosθ
cos²θ + 4sin²θ - 4sinθ cosθ = 4
4sin²θ + cos²θ - 4sinθ cosθ = 4 --------------- (1)
By using algebraic identity,
(a - b)² = a² - 2ab + b² --------------------- (2)
By comparing (1) and (2),
a² = 4sin²θ
a = 2sinθ
2ab = 4sinθ cosθ
ab = 2sinθ cosθ
b² = cos²θ
b = cosθ
So, 4sin²θ + cos²θ - 4sinθ cosθ = (2sinθ - cosθ)²
Now, (2sinθ - cosθ)² = 4
Taking square root,
2sinθ - cosθ = 2
Therefore, 2sinθ - cosθ = 2
✦ Try This: If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 8
NCERT Exemplar Class 10 Maths Exercise 8.4 Problem 5
Given that sinθ + 2cosθ = 1, then prove that 2sinθ - cosθ = 2
Summary:
Given that sinθ + 2cosθ = 1, then it is proven that 2sinθ - cosθ = 2
☛ Related Questions:
- The angle of elevation of the top of a tower from two points distant s and t from its foot are compl . . . .
- The shadow of a tower standing on a level plane is found to be 50 m longer when Sun’s elevation is 3 . . . .
- A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height h . . . .
visual curriculum