Find the value of tan- 1 (1) + cos- 1 (- 1/2) + sin- 1 (- 1/2)
Solution:
Inverse trigonometric functions are the inverse ratio of the basic trigonometric ratios.
Here the basic trigonometric function of Sin θ = y, can be changed to θ = sin-1 y
Let, tan- 1 (1) = x
Hence,
tan x = 1
= tan (π / 4)
Therefore,
tan- 1 (1) = (π / 4)
Now, let cos- 1 (- 1/2) = y
Hence,
cos y = - 1/2
= - cos (π/3)
= cos (π - π/3)
= cos (2π/3)
Therefore,
cos- 1 (- 1/2) = (2π / 3)
Again, let sin- 1 (- 1/2)
= z
Hence,
sin z = - 1 / 2
= - sin (π / 6)
= sin (- π / 6)
Therefore,
sin- 1 (- 1/2) = (- π / 6)
Thus,
tan- 1 (1) + cos- 1 (- 1/2) + sin- 1 (- 1/2) =
π / 4 + 2 π / 3 - π / 6
= (3 π + 8 π - 2 π) / 12
= 9 π / 12
= 3 π / 4
NCERT Solutions for Class 12 Maths - Chapter 2 Exercise 2.1 Question 11
Find the value of tan- 1 (1) + cos- 1 (- 1/2) + sin- 1 (- 1/2).
Summary:
The value of tan- 1 (1) + cos- 1 (- 1/2) + sin- 1 (- 1/2) = π / 4 + 2 π / 3 - π / 6 = 3 π / 4
visual curriculum