Find the value of a in (3 - √5) / (3 + 2√5) = a√5 - 19/11
Solution:
Given, the expression is (3 - √5) / (3 + 2√5) = a√5 - 19/11
We have to find the value of a.
Considering LHS,
LHS: (3 - √5) / (3 + 2√5)
By taking conjugate,
(3 - √5) / (3 + 2√5) = (3 - √5) / (3 + 2√5) × (3 - 2√5) / (3 - 2√5)
= (3 - √5)(3 - 2√5) / (3 + 2√5)(3 - 2√5)
By using algebraic identity,
(a² - b²) = (a - b)(a + b)
(3 + 2√5)(3 - 2√5) = (3)² - (2√5)²
= 9 - 4(5)
= 9 - 20
= -11
So, (3 - √5)(3 - 2√5) / (3 + 2√5)(3 - 2√5) = (3 - √5)(3 - 2√5) / (-11)
By multiplicative and distributive property,
(3 - √5)(3 - 2√5) = 3(3) - 3(2√5) - 3(√5) + 2√5(√5)
= 9 - 6√5 - 3√5 + 2(5)
= 9 - 9√5 + 10
= 19 - 9√5
Now, (3 - √5)(3 - 2√5) / (-11) = (19 - 9√5) / (-11)
= 19/(-11) - 9√5/(-11)
= 9√5/11 - 19/11
So, a√5 - 19/11 = 9√5/11 - 19/11
a√5 - 19/11 + 19/11 = 9√5/11
a√5 = 9√5/11
a = 9/11
Therefore, the value of a is 9/11
✦ Try This: Find the values of a³ + b³ if a = 1/(7 - 4√3) and b = 1/(7 + 4√3)
☛ Also Check: NCERT Solutions for Class 9 Maths Chapter 1
NCERT Exemplar Class 9 Maths Exercise 1.3 Problem 11(ii)
Find the value of a in (3 - √5) / (3 + 2√5) = a√5 - 19/11
Summary:
The surd that is used to multiply is called the rationalizing factor (RF). The value of a in (3 - √5) / (3 + 2√5) = a√5 - 19/11 is 9/11
☛ Related Questions:
visual curriculum