Find the principal value of tan-1 (- √3)
Solution:
Inverse trigonometric functions are the inverse ratio of the basic trigonometric ratios.
Here the basic trigonometric function of Sin θ = y, can be changed to
θ = sin-1 y
Let
tan-1 (- √3) = y
Hence,
tan y = - √3
= - tan (π/3)
= tan (- π / 3)
Range of the principal value of tan-1 (x)
= (- π / 2, π / 2)
Thus,
principal value of tan-1 (- √3)
= (- π / 3)
NCERT Solutions for Class 12 Maths - Chapter 2 Exercise 2.1 Question 4
Find the principal value of tan-1 (- √3)
Summary:
The principal value of tan-1 (- √3) = (- π / 3). Range of the principal value of tan-1 (x) = (- π / 2, π / 2)
Math worksheets and
visual curriculum
visual curriculum