Find the modulus and argument of the complex number (1 + 2i) / (1 - 3i)
Solution:
Let us convert the given complex number to the form a + ib.
(1 + 2i) / (1 - 3i) = (1 + 2i) / (1 - 3i) · (1 + 3i) / (1 + 3i)
= (1 + 2i + 3i + 6i2) / (1 - 9i2)
= (1 + 5i - 6) / (1 + 9) (because i2 = -1)
= (-5 + 5i) / 10
= -1/2 + i/2
Let us assume that -1/2 + i/2= = r (cosθ + i sinθ) (Polar form)
Let r cosθ = - 1/2 and r sinθ = 1/2
On squaring and adding, we obtain
r² cos² θ + r² sin² θ = (- 1/2)² + (1/2)²
⇒ r² (cos² θ + sin² θ) = 1/4 + 1/4 = 1/2
⇒ r = 1/√2 [∵ Conventionally, r > 0]
Therefore,
(1/√2) cosθ = - 1/2 and (1/√2) sinθ = 1/2
⇒ cosθ = - 1/√2 and sinθ = 1/√2
Since, θ lies in the quadrant II, θ = π - π/4 = 3π/4
Hence, the modulus and argument of the given complex number are 1/√2 and 3π/4, respectively
NCERT Solutions Class 11 Maths Chapter 5 Exercise ME Question 13
Find the modulus and argument of the complex number (1 + 2i) / (1 - 3i)
Summary:
The modulus and argument of the given complex number are 1/√2 and 3π/4, respectively
visual curriculum