Find the expansion of the following using a suitable identity.
(i) (3x + 7y) (3x - 7y)
(ii) (4x/5 + y/4) (4x/5 + 3y/4)
Solution:
(i) (3x + 7y) (3x - 7y)
Using the identity (a + b) (a - b) = a² - b²,
Substitute a = 3x and b = 7y,
(3x + 7y) (3x - 7y) = (3x)² - (7y)²
= 9x² - 49y²
(ii) (4x/5 + y/4) (4x/5 + 3y/4)
Using the identity (x + a) (x + b) = x² + (a + b)x + ab,
substitute x = 4x/5, a = y/4 and b = 3y/4
(4x/5 + y/4) (4x/5 + 3y/4) = (4x/5)² + [(y/4 +3y/4)4x/5] + [(y/4)(3y/4)]
= (16x²/25) + [(4y/4)4x/5] + (3y²/16)
= (16x²/25) + (16xy/20) + (3y²/16)
= (16x²/25) + (4xy/5) + (3y²/16)
✦ Try This: Find the expansion of the following using a suitable identity. (2a + 3b) (2a - 3b)
Given, (2a + 3b) (2a - 3b)
Using the identity (x + y) (x - y) = x² -y²,
Substitute x = 2a and y = 3b ,
(2a + 3b) (2a - 3b) = (2a)² - (3b)²
= 4a² - 9b²
☛ Also Check: NCERT Solutions for Class 8 Maths Chapter 9
NCERT Exemplar Class 8 Maths Chapter 7 Sample Problem 11
Find the expansion of the following using a suitable identity. (i) (3x + 7y) (3x - 7y) (ii) (4x/5 + y/4) (4x/5 + 3y/4)
Summary:
The expansion of (i) (3x + 7y) (3x - 7y) (ii) (4x/5 + y/4) (4x/5 + 3y/4) are 9x² - 49y² and (16x²/25) + (4xy/5) + (3y²/16) respectively
☛ Related Questions:
visual curriculum