Find the derivative of cos x from first principle
Solution:
Let f (x) = cos x.
Accordingly, from the first principle,
f' (x) = limₕ→₀ [f (x + h) - f (x)]/h
f' (x) = limₕ→₀ [cos(x + h) - cos(x)]/h
= limₕ→₀ (cos x cos h - sin x sin h - cos x)/h
= limₕ→₀ [- cos x (1 - cos h) - sin x sin h]/h
= limₕ→₀ [- cos x (1 - cos h)/h - sin x sin h/h]
= - cos x [limₕ→₀ (1 - cos h)/h] - sin x [limₕ→₀ (sin h/h)]
= - cos x (0) - sin x (1) [∵ limₕ→₀ (1 - cos h)/h = 0 and limₕ→₀ (sin h/h) = 1]
= - sin x
NCERT Solutions Class 11 Maths Chapter 13 Exercise 13.2 Question 10
Find the derivative of cos x from first principle
Summary:
The derivative of cos x is -sinx
Math worksheets and
visual curriculum
visual curriculum