Factorise x² + (1/x)² + 2 - 3x - (3/x).
Solution:
Given, x² + (1/x)² + 2 - 3x - (3/x)
We have, [x + (1/x)]² = x² + (1/x)² + 2(x)(1/x) = x² + (1/x)² + 2
∴ x² + (1/x)² + 2 - 3x - (3/x)
= [x² + (1/x)² + 2] - 3[x + (1/x)]
= [x + (1/x)]² - 3[x + (1/x)]
= [x + (1/x)][x + (1/x)] - 3[x + (1/x)]
= [x + (1/x)]{[x + (1/x)] - 3}
✦ Try This: Factorise: 4x² + (1/4x²) + 6x + (3/2x) + 2
Given, 4x² + (1/4x²) + 6x + (3/2x)+ 2
We have, [2x + (1/2x)]² = (2x)² + (1/2x)² + 2(2x)(1/2x) = 4x² + 1/4x² + 2
∴4x² + (1/4x²) + 2 + 6x + (3/2x)
= [(2x)² + (1/2x)² + 2(2x)(1/2x)] + 3[2x + 1/2x]
=[2x + 1/2x]² + 3[2x + 1/2x]
= [2x + 1/2x][2x + 1/2x + 3]
☛ Also Check: NCERT Solutions for Class 8 Maths Chapter 9
NCERT Exemplar Class 8 Maths Chapter 7 Problem 118
Factorise x² + (1/x)² + 2 - 3x - (3/x).
Summary:
Factorising x² + (1/x)² + 2 - 3x - (3/x) we get [x + (1/x)]{[x + (1/x)] - 3}
☛ Related Questions:
visual curriculum