Factorise the following expressions
(i) 7x - 42 (ii) 6p -12q (iii) 7a2+14a (iv) -16z + 20z3
(v) 20l2m + 30alm (vi) 5x2y -15xy2 (vii) 10a2 -15b2 + 20c2
(viii) -4a2 + 4ab - 4ca (ix) x2yz + xy2z + xyz2
(x) ax2y + bxy2 + cxyz
Solution:
Factorization is a method of finding factors for any mathematical object, be it a number, a polynomial or any algebraic expression. Thus, factorization of an algebraic expression refers to finding out the factors of the given algebraic expression.
(i) 7x - 42
7x = 7 × x
42 = 2 × 3 × 7
The common factor is 7.
Therefore, 7x - 42 = (7 × x) - (2 × 3 × 7 )
= 7(x - 6)
(ii) 6p -12q
6p = 2 × 3 × p
12q = 2 × 2 × 3 × q
The common factors are 2 and 3.
Therefore, 6p -12q = (2 × 3 × p) - (2 × 2 × 3 × q)
= 2 × 3(p - 2 × q)
= 6(p - 2q)
(iii) 7a2+14a
7a2= 7 × a × a
14a = 2 × 7 × a
The common factors are 7 and a .
Therefore, 7a2 + 14a = (7 × a × a) + (2 × 7 × a)
= 7 × a(a + 2)
= 7a(a + 2)
(iv) -16z + 20z3
16z = -1 × 2 × 2 × 2 × 2 × z
20z3 = 2 × 2 × 5 × z × z × z
The common factors are 2, 2, and z.
Therefore, -16z + 20z3 = -(2 × 2 × 2 × 2 × z) + (2 × 2 × 5 × z × z × z)
= (2 × 2 × z)[-(2 × 2) + (5 × z × z)]
= 4z(-4 + 5z2)
(v) 20l2m + 30alm
20l2m= 2 × 2 × 5 × l × l × m
30alm = 2 × 3 × 5 × a × l × m
The common factors are 2, 5, l and m.
Therefore, 20l2m + 30alm = (2 × 2 × 5 × l × l × m) + (2 × 3 × 5 × a × l × m)
= (2 × 5 × l × m)[(2 × l) + (3 × a)]
= 10lm(2l + 3a)
(vi) 5x2y -15xy2
5x2y = 5 × x × x × y
15xy2 = 3 × 5 × x × y × y
The common factors are 5, x, and y.
Therefore, 5x2y - 15xy2 = (5 × x × x × y) - (3 × 5 × x × y × y)
= 5 × x × y[x - (3 × y)]
= 5xy(x - 3y)
(vii) 10a2 -15b2 + 20c2
10a2 = 2 × 5 × a × a
15b2 = 3 × 5 × b × b
20c2 = 2 × 2 × 5 × c × c
The common factor is 5.
Therefore, 10a2 -15b2 + 20c2 = (2 × 5 × a × a) - (3 × 5 × b × b) + (2 × 2 × 5 × c × c)
= 5[(2 × a × a) - (3 × b × b) + (2 × 2 × c × c)]
= 5(2a2 - 3b2 + 4c2 )
(viii) -4a2 + 4ab - 4ca
4a2 = 2 × 2 × a × a
4ab = 2 × 2 × a × b
4ca = 2 × 2 × c × a
The common factors are 2, 2, and a .
Therefore, - 4a2 + 4ab - 4ca = -(2 × 2 × a × a) + (2 × 2 × a × b) - (2 × 2 × c × a)
= 2 × 2 × a (-a + b - c)
= 4a(-a + b - c)
(ix) x2yz + xy2z + xyz2
x2yz = x × x × y × z
xy2z= x × y × y × z
xyz2 = x × y × z × z
The common factors are x, y, and z.
Therefore, x2yz + xy2z + xyz2 = (x × x × y × z) + (x × y × y × z) + (x × y × z × z)
= x × y × z (x + y + z)
= xyz(x + y + z)
(x) ax2y + bxy2 + cxyz
ax2y= a × x × x × y
bxy2 = b × x × y × y
cxyz= c × x × y × z
The common factors are x and y.
Therefore, ax2y + bxy2 + cxyz = (a × x × x × y) + (b × x × y × y) + (c × x × y × z)
= (x × y)[(a × x) + (b × y) + (c × z)]
= xy(ax + by + cz)
☛ Check: NCERT Solutions for Class 8 Maths Chapter 14
Video Solution:
Factorise the following expressions (i) 7x - 42 (ii) 6p-12q (iii) 7a²+14a (iv) -16z + 20z³ (v) 20l²m + 30alm (vi) 5x²y -15xy² (vii) 10a² -15b² + 20c² (viii) -4a² + 4ab - 4ca (ix) x²yz + xy²z + xyz² (x) ax²y + bxy² + cxyz
Class 8 Maths NCERT Solutions Chapter 14 Exercise 14.1 Question 2
Summary:
The following expressions (i) 7x - 42 (ii) 6p-12q (iii) 7a²+14a (iv) -16z + 20z³ (v) 20l²m + 30alm (vi) 5x²y -15xy² (vii) 10a² -15b² + 20c² (viii) -4a² + 4ab - 4ca (ix) x²yz + xy²z + xyz² (x) ax²y + bxy² + cxyz are factorised as: (i) 7(x - 6) (ii) 6(p - 2q) (iii) 7a(a + 2) (iv) 4z(-4 + 5z2) (v) 10lm(2l + 3a) (vi) 5xy(x - 3y) (vii) 5(2a2 - 3b2 + 4c2)(viii) 4a(-a + b - c) (ix) xyz(x + y + z) (x) xy(ax + by + cz)
☛ Related Questions:
- Factorize: (i) x2+ xy + 8x + 8 y (ii) 15xy- 6x + 5 y - 2 (iii) ax+ bx - ay - by (iv) 15 pq +15 + 9q + 25 p (v) z - 7 + 7xy - xyz
- Factorize the following expressions. (i) a2 + 8a +16 (ii) p2 -10 p + 25 (iii) 25m2 + 30m + 9 (iv) 49 y2 + 84 yz + 36z2 (v) 4x2 - 8x + 4 (vi) 121b2 - 88bc +16c2 (vii) (l +m)2 - 4lm (Hint: Expand (l + m)2 first) (viii) a4+ 2a2b2 + b4.
- Factorize (i) 4 p2 - 9q2 (ii) 63a2 - 112b2 (iii) 49x2 - 36 (iv) 16x5 - 144x3 (v) (l + m)2 - (l - m)2 (vi) 9x2y2 - 16 (vii) (x2 - 2xy + y2) - z2 (viii) 25a2 - 4b2 + 28bc - 49c2
- Factorise the expressions. (i) ax2 + bx (ii) 7p2 + 21q2 (iii) 2x3 + 2xy2 + 2xz2 (iv) am2 + bm2 + bn2 + an2 (v) (lm + l) + m + 1 (vi) y(y + z) + 9( y + z) (vii) 5y2 - 20 y - 8z + 2yz (viii) 10ab + 4a + 5b + 2 (ix) 6xy - 4 y + 6 - 9x.
visual curriculum