Factorise: (i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
(ii) 2x2 + y2 + 8z2 – 2√2 xy + 4√2 yz – 8xz
Solution:
We will be using the algebraic identity (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca to solve the following.
i) 4x² + 9y² + 16z² + 12xy - 24yz - 16xz
This can be re-written as:
(2x)² +(3y)² +(-4z)² + 2(2x)(3y) + 2(3y)(-4z) + 2(-4z)(2x)
This is of the form a² + b² + c² + 2ab + 2bc + 2ca = (a + b + c)²
Here a = 2x, b = 3y, c = -4z
Hence, 4x² + 9y² + 16z² +12xy - 24yz - 16xz = (2x + 3y - 4z)²
ii) 2x² + y² + 8z² - 2√2xy + 4√2yz - 8xz
We know that, 2 = (√2)2, √8 = 2√2
Thus, the given expression can be re-written as:
(-√2x)² + (y)² + (2√2z )² + 2(-√2x)(y) + 2(y)(2√2z) + 2(2√2z)(-√2x)
This is of the form a² + b² + c² + 2ab + 2bc + 2ca = (a + b + c)²
Here a = -√2x, b = y, c = 2√2z
Hence 2x² + y² + 8z² - 2√2xy + 4√2yz - 8xz = (-√2x + y + 2√2z)²
☛ Check: NCERT Solutions Class 9 Maths Chapter 2
Factorise: (i) 4x² + 9y² + 16z² + 12xy - 24yz - 16xz (ii) 2x² + y² + 8z² - 2√2xy + 4√2yz - 8xz
NCERT Solutions Class 9 Maths Chapter 2 Exercise 2.5 Question 5
Summary:
The factorized form of 4x² + 9y² + 16z² + 12xy - 24yz - 16xz and 2x² + y² + 8z² - 2√2xy + 4√2yz - 8xz are (2x + 3y − 4z)² and (−√2x +y +2√2z)² respectively.
☛ Related Questions:
- Use suitable identities to find the following products: (i) (x + 4) (x + 10) (ii) (x + 8) (x - 10) (iii) (3x + 4) (3x - 5) (iv) (y^2 + 3/2)(y^2 - 3/2) (v) (3 - 2x) (3 + 2x)
- Evaluate the following products without multiplying directly:(i) 103 × 107(ii) 95 × 96(iii) 104 × 96
- Factorise the following using appropriate identities:(i) 9x2 + 6xy + y2(ii) 4y2 - 4y + 1(iii) x2 - y2/100
- Expand each of the following, using suitable identities:i) (x + 2y + 4z)²ii) (2x - y + z)²iii) (-2x + 3y + 2z)²iv) (3a - 7b - c)²v) (-2x + 5y - 3z)²vi) [(1/4)a - (1/2)b + 1]²
visual curriculum