Factorise : a³ - 2√2b³
Solution:
Given, the expression is a³ - 2√2b³
We have to factorise the given expression.
Using the algebraic identity,
a³ - b³ = (a - b)(a² + b² + ab)
a³ - 2√2b³ = (a)³ - (√2b)³
Here a = a and b = √2b
(a)³ - (√2b)³ = (a - √2b)((a)² + (√2b)² + (a)(√2b))
= (a - √2b)(a² + 2b² + √2ab)
Therefore, the factors are (a - √2b)(a² + 2b² + √2ab)
✦ Try This: Factorise : a³ - 8b³
Given, the expression is a³ - 8b³
We have to factorise the given expression.
Using the algebraic identity,
a³ - b³ = (a - b)(a² + b² + ab)
a³ - 8b³ = (a)³ - (2b)³
Here a = a and b = 2b
(a)³ - (2b)³ = (a - 2b)((a)² + (2b)² + (a)(2b))
= (a - 2b)(a² + 4b² + 2ab)
Therefore, the factors are (a - 2b)(a² + 4b² + 2ab)
☛ Also Check: NCERT Solutions for Class 9 Maths Chapter 2
NCERT Exemplar Class 9 Maths Exercise 2.3 Problem 34(ii)
Factorise : a³ - 2√2b³
Summary:
On factorising a³ - 2√2b³ using the algebraic identity we get (a - √2b)(a² + 2b² + √2ab)
☛ Related Questions:
visual curriculum