Factorise: a²b + a²c + ab + ac + b²c + c²b
Solution:
Factorization of an algebraic expression refers to finding out the factors of the given algebraic expression.
Given, a²b + a²c + ab + ac + b²c + c²b
This expression does not have a common factor in all the terms.
Rearranging the terms, can write it as
a²b + a²c + ab + b²c + ac + c²b
= a²(b + c) + b(a + bc) + c(a + bc)
= a²(b + c) + [(b + c) (a + bc)]
= (b + c) (a² + a + bc)
✦ Try This: Factorise: x⁴ + x³ + xyz + x³y + x²y + y²z
Given, Factorise: x⁴ + x³ + xyz + x³y + x²y + y²z
= x(x³ + x² + yz) + y(x³ + x² + yz)
=(x + y)(x³ + x² + yz)
☛ Also Check: NCERT Solutions for Class 8 Maths Chapter 9
NCERT Exemplar Class 8 Maths Chapter 7 Problem 88(xvii)
Factorise: a²b + a²c + ab + ac + b²c + c²b
Summary:
Factorising a²b + a²c + ab + ac + b²c + c²b we get, (b + c) (a² + a + bc)
☛ Related Questions:
visual curriculum