Factorise: 63p²q²r²s - 9pq²r²s² + 15p²qr²s² - 60p²q²rs²
Solution:
Factorization of an algebraic expression refers to finding out the factors of the given algebraic expression.
In the given expression 63p²q²r²s - 9pq²r²s² + 15p²qr²s² - 60p²q²rs²,
The first term 63p²q²r²s can be factorised as: 3 × 3 × 7 × p × p × q × q × r × r × s
The second term - 9pq²r²s² can be factorised as: (-1) × 3 × 3 × p × q × q × r × r × s × s
The third term 15p²qr²s² can be factorised as: 3 × 5 × p × p × q × r × r × s × s and
The fourth term - 60p²q²rs² can be factorised as : (-1) × 2 × 2 × 3 × 5 × p × p × q × q × r × s × s
The common factor of all the terms is 3pqrs
Taking out the common factor we get,
63p²q²r²s - 9pq²r²s² + 15p²qr²s² - 60p²q²rs² = 3pqrs [21pqr - 3qrs + 5prs - 20pqs]
✦ Try This: Factorise: 13x²y³z⁴p⁵ - 26x³y⁴z⁵p² + 52x⁴y⁵z²p³ - 78x⁵y²z³p⁴
Given, 13x²y³z⁴p⁵ - 26x³y⁴z⁵p² + 52x⁴y⁵z²p³ - 78x⁵y²z³p⁴
= 13x²y²z²p² [yz²p³ - 2xy²z³ + 4x²y³p - 6x³zp²]
☛ Also Check: NCERT Solutions for Class 8 Maths Chapter 9
NCERT Exemplar Class 8 Maths Chapter 7 Problem 88(ix)
Factorise: 63p²q²r²s - 9pq²r²s² + 15p²qr²s² - 60p²q²rs²
Summary:
Factorising 63p²q²r²s - 9pq²r²s² + 15p²qr²s² - 60p²q²rs² we get, 3pqrs [21pqr - 3qrs + 5prs - 20pqs]
☛ Related Questions:
visual curriculum