Factorise: 3pqr - 6p²q²r² - 15r²
Solution:
Factorization of an algebraic expression refers to finding out the factors of the given algebraic expression.
In the given expression 3pqr -6p²q²r² - 15r²,
The first term 3pqr can be factorised as: 3 × p × q × r
The second term -6p²q²r² can be factorised as: (-1) × 2 × 3 × p × p × q × q × r × r and
The third term - 15r² can be factorised as: (-1) × 3 × 5 × r × r
The common factor of all the terms is 3r
Taking out the common factor we get,
3pqr - 6p²q²r² - 15r² = 3r(pq - 2p²q²r - 5r)
✦ Try This: Factorise: 4x²y²z² - 12x³y³z³ + 24x⁴y⁴z⁴
Given, 4x²y²z² - 12x³y³z³ + 24x⁴y⁴z⁴
= 4x²y²z² [ 1 - 3xyz + 6x²y²z²]
NCERT Exemplar Class 8 Maths Chapter 7 Problem 88(v)
Factorise: 3pqr - 6p²q²r² - 15r²
Summary:
Factorising 3pqr - 6p²q²r² - 15r² we get, 3r(pq - 2p²q²r - 5r)
☛ Related Questions:
visual curriculum