Factorise: 2ax² + 4axy + 3bx² + 2ay² + 6bxy + 3by²
Solution:
Factorization of an algebraic expression refers to finding out the factors of the given algebraic expression.
Given, 2ax² + 4axy + 3bx² + 2ay² + 6bxy + 3by²
This expression does not have a common factor in all the terms.
Rearranging the terms, can write it as
2ax² + 3bx² + 4axy + 6bxy + 2ay² + 3by²
= x²(2a + 3b) + 2xy(2a + 3b) + y²(2a + 3b)
= (2a + 3b) [x² + 2xy + y²]
=(2a +3b) (x + y)²
✦ Try This: Factorise:3pa² - 30abp + 75pb² - 2a²q + 20abq - 50b²q
Given, 3pa² - 30abp + 75pb² - 2a²q + 20abq - 50b²q
= 3p(a² - 10ab + 25b²) - 2q(a² - 10ab + 25b²)
= (a² - 10ab + 25b²)(3p - 2q)
= (a - 5b)²(3p - 2q)
☛ Also Check: NCERT Solutions for Class 8 Maths Chapter 9
NCERT Exemplar Class 8 Maths Chapter 7 Problem 88(xviii)
Factorise: 2ax² + 4axy + 3bx² + 2ay² + 6bxy + 3by²
Summary:
Factorising 2ax² + 4axy + 3bx² + 2ay² + 6bxy + 3by² we get, (2a +3b) (x + y)²
☛ Related Questions:
visual curriculum