Convert the following in the polar form:
i) (1 + 7i) / (2 - i)²
ii) (1 + 3i) / (1 - 2i)
Solution:
We will convert each of the numbers of the form a + bi by rationalizing the denominator and then we convert them into polar form.
i) (1 + 7i) / (2 - i)² = (1 + 7i) / (2 + 1 - 4i)
= (1 + 7i) / (3 - 4i) ·(3 + 4i) / (3 + 4i)
= (3 + 4i + 21i - 28) / (9 + 16)
= (-25 + 25i) / 25
= -1 + i
Let us assume that -1 + i = r (cosθ + sinθ) (Polar form)
Let r cosθ = - 1 and r sinθ = 1
On squaring and adding, we obtain
r² cos² θ + r² sin² θ = (- 1)² + 1²
⇒ r² (cos² θ + sin² θ) = 1 + 1
⇒ r² = 2
⇒ r = √2 [∵ Conventionally, r > 0]
Therefore,
√2 cosθ = - 1 and √2 sinθ = 1
⇒ cosθ = - 1/√2 and sinθ = 1/√2
Since, θ lies in the quadrant II, θ = π - π/4 = 3π/4
Hence,
- 1 + i = r cosθ + ir sinθ
= √2 cos 3π/4 + i √2 sin 3π/4
Thus, the required polar form is √2(cos 3π/4 + i sin3π/4 )
ii) (1 + 3i) / (1 - 2i) = (1 + 3i) / (1 - 2i) · (1 + 2i) / (1 + 2i)
= (1 + 3i + 2i - 6) / (1 + 4)
= (-5 + 5i) / 5
= -1 + i
Just like the previous one, -1 + i = √2(cos 3π/4 + i sin3π/4 )
Thus, the required polar form is √2(cos 3π/4 + i sin3π/4 )
NCERT Solutions Class 11 Maths Chapter 5 Exercise ME Question 5
Convert the following in the polar form: i) (1 + 7i) / (2 - i)² ii) (1 + 3i) / (1 - 2i)
Summary:
By converting the given complex numbers in polar form, we get
i) √2(cos 3π/4 + i sin3π/4 ) ii) √2(cos 3π/4 + i sin3π/4 )
visual curriculum