Choose the correct option. Justify your choice.
(i) 9 sec2A - 9 tan2A =
(A) 1 (B) 9 (C) 8 (D) 0
(ii) (1 + tanθ + secθ) (1 + cotθ - cosecθ) =
(A) 0 (B) 1 (C) 2 (D) -1
(iii) (sec A + tan A) (1 - sin A) =
(A) sec A (B) sin A (C) cosec A (D) cos A
(iv) (1 + tan2 A)/(1 + cot2 A) =
(A) sec2A (B) -1 (C) cot2A (D) tan2A
Solution:
We will use the basic trigonometric identities and properties of the trigonometric ratios to solve the problem.
sin2 A + cos2 A = 1
cosec2 A = 1 + cot2 A
sec2 A = 1 + tan2 A
(i) 9 sec2A - 9 tan2A
= 9 (sec2 A - tan2 A)
= 9 × 1 [By using the identity, 1 + sec2 A = tan2 A]
= 9
Thus, option (B) is the correct answer.
(ii) (1 + tanθ + secθ) (1 + cotθ - cosecθ) -------- (1)
We know that using the trigonometric ratios,
tan (x) = sin (x)/cos (x)
cot (x) = cos (x)/sin(x) = 1/tan (x)
sec (x) = 1/cos (x)
cosec (x) = 1/sin (x)
By substituting the above function in equation (1),
= [(1 + sinθ/cosθ + 1/cosθ) (1 + cosθ/sinθ - 1/sinθ)]
= [(cosθ + sinθ + 1)/cosθ] [(sinθ + cosθ - 1)/sinθ] (By taking LCM and multiplying)
= [(sinθ + cosθ)2 - (- 1)2] / sinθ cosθ [Using a2 - b2 = (a + b)(a - b)]
= [sin2 θ + cos2 θ + 2 sinθ cosθ - 1] / sinθ cosθ
= (1 + 2 sinθ cosθ - 1) / sinθ cosθ (Using identity sin2 θ + cos2 θ = 1)
= 2 sinθ cosθ / sinθ cosθ
= 2
Hence, option (C) is correct.
(iii) (sec A + tan A) (1 - sin A)
We know that,
tan(x) = sin(x) / cos(x)
sec(x) = 1/cos(x)
By substituting these values in the given expression we get,
= [(1/cos A) + (sin A/cos A)] (1 - sin A)
= [(1 + sin A)/cos A] (1 - sin A)
= (1 - sin2 A) / cos A
= cos2 A/cos A (By using the identity sin2θ + cos2θ = 1)
= cos A
Hence, option (D) is correct.
(iv) (1 + tan2 A) / (1 + cot2 A)
We know that,
tan (x) = sin (x) / cos (x)
cot (x) = cos (x) / sin (x)
= 1/tan (x)
By substituting these in the given expression we get,
(1 + tan2 A) / (1 + cot2 A) = (1 + sin2 A/cos2 A) / (1 + cos2 A/sin2 A)
= [(cos2 A + sin2 A)/cos2 A] [(sin2 A + cos2 A)/sin2 A]
= (1/cos2 A)/(1/sin2 A) [By using the identity: sin2 A + cos2 A = 1]
= sin2 A/cos2 A
= tan2 A
Hence, option (D) is correct.
☛ Check: NCERT Solutions Class 10 Maths Chapter 8
Video Solution:
Choose the correct option. Justify your choice. (i) 9 sec²A - 9 tan²A = (A) 1 (B) 9 (C) 8 (D) 0 (ii) (1 + tanθ + secθ) (1 + cotθ - cosecθ) = (A) 0 (B) 1 (C) 2 (D) -1 (iii) (sec A + tan A) (1 - sin A) = (A) sec A (B) sin A (C) cosec A (D) cos A (iv) (1 + tan²A)/(1 + cot²A) = (A) sec²A (B) -1 (C) cot²A (D) tan²A
Maths NCERT Solutions Class 10 Chapter 8 Exercise 8.4 Question 4
Summary:
The correct answers for the following 9 sec2A - 9 tan2A, (1 + tan θ + sec θ)(1 + cot θ − cosec θ), (sec A + tan A) (1 -sin A) and (1 + tan2 A)/(1 + cot2 A) are: (B) 9, (C) 2, (D) cos A and (D) tan2 A, respectively.
☛ Related Questions:
- Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
- Write all the other trigonometric ratios of ∠A in terms of sec A.
- Evaluate:(i) (sin² 63° + sin² 27) / (cos² 17° + cos² 73°)(ii) sin 25° cos 65° + cos 25° sin 65°
- Prove the following identities, where the angles involved are acute angles for which the expressions are defined.(i) (cosecθ - cotθ)² = 1 - cosθ/1 + cosθ(ii) cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A(iii) tanθ/(1 - cotθ) + cotθ/(1 - tanθ) = 1 + secθ cosecθ(iv) (1 + sec A)/sec A = sin² A/(1 - cos A)(v) (cos A - sin A + 1)/cos A + sin A + 1 = cosec A + cot A(vi) 1 + sin A/(1 - sin A) = sec A+ tan A(vii) (sinθ - 2sin³ θ)/(2cosθ - cosθ) = tanθ(viii) (sin A + cosec A)² + (cos A + sec A)² = 7 + tan² A + cot² A(ix) (cosec A - sin A)(sec A - cos A) = 1/(tan A + cot A)(x) [(1 + tan² A)/(1 + cot² A)] = [(1 - tan A/1 - cot A)²] = tan² A
visual curriculum