Choose the correct option and justify your choice:
(i) 2 tan 30°/1 + tan2 30° =
(A) sin 60° (B) cos 60° (C) tan 60° (D) sin 30°
(ii) 1 - tan2 45°/1 + tan2 45° =
(A) tan 90° (B) 1 (C) sin 45° (D) 0
(iii) sin 2A = 2 sin A is true when A =
(A) 0° (B) 30° (C) 45° (D) 60°
(iv) 2 tan 30°/1 - tan2 30° =
(A) cos 60° (B) sin 60° (C) tan 60° (D) sin 30°
Solution:
We will use the six basic trigonometric ratios and trigonometric table to solve the problem.
(i) 2 tan 30°/1 + tan2 30°
By substituting the values of given trigonometric ratios in the above equation, we get
= 2 × (1/√3)/1 + (1/√3)2
= 2 × (1/√3)/(1 + 1/3)
= (2/√3) / (4/3)
= 6/4√3
= √3/2
Out of the given options only sin 60° = √3/2. Hence, option (A) is correct.
(ii) 1 - tan² 45°/1 + tan² 45°
By substituting the values of given trigonometric ratios for tan 45°.
= 1 - (1)²/1 + (1)²
= (1 - 1)/(1 + 1)
= 0/2
= 0
Hence, option (D) is correct.
(iii) sin 2A = 2 sin A
By substituting A = 0°, 30°, 45° and 60°, we get
For A = 0°,
sin 2A = sin (2 × 0°)
= sin 0°
= 0
2 sin A = 2 × sin 0°
= 2 × 0
= 0
So, sin 2A = 2 sin A, when A = 0°
For A = 30°,
sin 2A = sin (2 × 30)°
= sin 60°
= √3/2
2 sin A = 2 × sin 30°
= 2 × 1/2
= 1
sin 2A ≠ 2 sin A, when A = 30°
For A = 45°
sin 2A = sin (2 × 45)°
= sin 90°
= 1
2 sin A = 2 × sin 45°
= 2 × 1/√2
= √2
So, sin 2A ≠ 2sin A, when A = 45°
For A = 60°
sin 2A = sin 2 × 60°
= sin 120°
= sin (180° - 60°)
= sin 60°
= √3/2
2sin A = 2 × sin 60°
= 2 × √3/2
= √3
So, sin 2A ≠ 2 sin A, when A = 60°
Hence, Option (A) is correct.
(iv) 2 tan 30°/1 - tan2 30°
By substituting the values of given trigonometric ratios for tan 30°, we get
= 2 × (1/√3) / 1 - (1/√3)2
= (2/√3) / (1 - 1/3)
= (2/√3) / (2/3)
= √3
Out of the given option only tan 60° = √3.
Hence, option (C) is correct.
☛ Check: NCERT Solutions for Class 10 Maths Chapter 8
Video Solution:
Choose the correct option and justify your choice: (i) 2 tan 30°/1 + tan² 30° (A) sin 60° (B) cos 60° (C) tan 60° (D) sin 30° (ii) 1 - tan² 45°/1 + tan² 45° (A) tan 90° (B) 1 (C) sin 45° (D) 0 (iii) sin 2A = 2sin A is true when A = (A) 0° (B) 30° (C) 45° (D) 60° (iv) 2 tan 30°/1 - tan² 30° (A) cos 60° (B) sin 60° (C) tan 60° (D) sin 30°
Maths NCERT Solutions Class 10 Chapter 8 Exercise 8.2 Question 2
Summary:
The correct option for the following are (i) 2 tan 30°/1 + tan2 30° - option (A) is correct, (ii) 1 - tan² 45°/1 + tan² 45° - option (D) is correct, (iii) in 2A = 2sin A - option (A) is correct, (iv) 2 tan 30°/1 - tan2 30° - option (C) is correct.
☛ Related Questions:
- If tan (A + B) = √3 and tan (A - B) = 1/√3; 0° < (A + B) ≤ 900 , A > B, find A and B.
- State whether the following are true or false. Justify your answer.(i) sin (A + B) = sin A + sin B.(ii) The value of sin θ increases as θ.(iii) The value of cos θ increases as θ.(iv) sin θ = cos θ for all values of θ.(v) cot A is not defined for A = 0°.
- Evaluate:(i) sin 18°/cos 72°(ii) tan 26°/cot 64°(iii) cos 48° - sin 42°(iv) cosec 31° - sec 59°
- Show that: (i) tan 48° tan 23° tan 42° tan 67° = 1 (ii) cos 38° cos 52° - sin 38° sin 52° = 0.
visual curriculum