An AP consists of 50 terms of which the 3rd term is 12 and the last term is 106. Find the 29th term.
Solution:
The formula for nth term of an AP is aₙ = a + (n - 1) d
Here, aₙ is the nth term, a is the first term, d is the common difference and n is the number of terms.
Third term of AP is a + (3 - 1)d = a + 2d
a + 2d = 12 .... (1)
Last term = 106
Thus, 50th term =106 [Since, n = 50]
a + (50 - 1)d = 106
a + 49d = 106........ (2)
By solving equations (1) and (2) for the values of a and d,
a + 49d - (a + 2d) = 106 - 12
47d = 94
d = 2
Putting d = 2 in equation (1)
a + 2 × 2 = 12
a + 4 = 12
a = 12 - 4
a = 8
29th term of the AP is a₂₉ = a + (29 - 1)d
a₂₉ = 8 + (28) 2
a₂₉ = 8 + 56
a₂₉ = 64
Thus, 29th term of the AP is 64.
☛ Check: NCERT Solutions for Class 10 Maths Chapter 5
Video Solution:
An AP consists of 50 terms of which the 3rd term is 12 and the last term is 106. Find the 29th term
NCERT Solutions Class 10 Maths Chapter 5 Exercise 5.2 Question 8
Summary:
An AP consists of 50 terms of which the 3rd term is 12 and the last term is 106. The 29th term is 64.
☛ Related Questions:
- If the 3rd and the 9th terms of an AP are 4 and -8, respectively, which term of this AP is zero.
- 17th term of an AP exceeds its 10th term by 7. Find the common difference.
- Which term of the AP 3,15,27,39... will be 132 more than its 54th term?
- Two APs have the same common difference. The difference between their 100th term is 100, what is the difference between their 1000th terms?
visual curriculum