Add the following expressions: t - t² - t³ - 14; 15t³ + 13 + 9t - 8t²; 12t² - 19 - 24t and 4t - 9t² + 19t³
Solution:
Given, the expressions are t - t² - t³ - 14; 15t³ + 13 + 9t - 8t²; 12t² - 19 - 24t and 4t - 9t² + 19t³
We have to add the expressions
On adding the expressions,
= t - t² - t³ - 14 + (15t³ + 13 + 9t - 8t²) + (12t² - 19 - 24t) + (4t - 9t² + 19t³)
By combining like terms,
= t + 9t - 24t + 4t - t² - 8t² + 12t² - 9t² - t³ + 15t³ + 19t³ - 14 + 13 - 19
= (1 + 9 - 24 + 4)t + (-1 - 8 + 12 - 9)t² + (-1 + 15 + 19)t³ + (13 - 14 - 19)
= (10 - 20)t + (-18 + 21)t² + (14 + 19)t³ + (-1 - 19)
= (-10)t + (-6)t² + (33)t³ + (-20)
= -10t - 6t² + 33t³ - 20
= 33t³ - 6t² - 10t - 20
Therefore, the sum of the expressions is 33t³ - 6t² - 10t - 20.
✦ Try This: Add the following expressions: 2t + 3t² - 4t³ - 24; 11t³ + 15 + 7t - 4t²; 11t² - 21 - 28t and 6t - 7t² + 18t³
☛ Also Check: NCERT Solutions for Class 7 Maths Chapter 12
NCERT Exemplar Class 7 Maths Chapter 10 Problem 57 (j)
Add the following expressions: t - t² - t³ - 14; 15t³ + 13 + 9t - 8t²; 12t² - 19 - 24t and 4t - 9t² + 19t³
Summary:
On adding the expressions t - t² - t³ - 14; 15t³ + 13 + 9t - 8t²; 12t² - 19 - 24t and 4t - 9t² + 19t³, we get 33t³ - 6t² - 10t - 20
☛ Related Questions:
visual curriculum