A day full of math games & activities. Find one near you.
A day full of math games & activities. Find one near you.
A day full of math games & activities. Find one near you.
A day full of math games & activities. Find one near you.
ABC is an isosceles triangle right angled at C. Prove that AB2 = 2AC2
Solution:
We know that, in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
In ΔABC, ∠ACB = 90° and AC = BC [Since, ABC is an isosceles triangle right angled at C]
Using Pythagoras theorem,
⇒ AB2 = AC2 + BC2
⇒ AB2 = AC2 + AC2 [Since AC = BC]
Therefore, AB2 = 2 AC2
☛ Check: NCERT Solutions for Class 10 Maths Chapter 6
Video Solution:
ABC is an isosceles triangle right angled at C. Prove that AB² = 2AC²
NCERT Class 10 Maths Solutions Chapter 6 Exercise 6.5 Question 4
Summary:
For a triangle ABC that is an isosceles triangle right angled at C, it is proved that AB2 = 2AC2.
☛ Related Questions:
- ABC is an isosceles triangle with AC = BC. If AB^2 = 2AC^2, prove that ABC is a right triangle.
- ABC is an equilateral triangle of side 2a. Find each of its altitudes.
- Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
- In Figure 6.54, O is a point in the interior of a triangle ABC, OD ⊥ BC, OE ⊥ AC and OF ⊥ AB. Show that(i) OA2 + OB2 + OC2 - OD2 - OE2 - OF2 = AF2 + BD2 + CE2(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2
Math worksheets and
visual curriculum
visual curriculum